Proceedings of the 1995 Winter Simulation (‘onference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

ARCHITECTURAL OPTIMIZATIONS TO

ADVANCED DISTRIBUTED

SIMULATION

Larry Mellon
Darrin West

Science Applications Int. Corp.
4301 N. Fairfax Dr., Suite #370
Arlington, VA 22203

ABSTRACT

Current DoD mechanisms to support distributed
simulations have reached their limits in terms of size and
fidelity. Several projects are underway to improve the
state of the art in the DoD, defining a new class of
distributed simulation: Advanced Distributed Simulation
(ADS). This paper presents an architectural view of the
problem area, i.e. identifying the conceptual objects in
an ADS system, and describing their responsibilities and
interactions. Classes of data transmission optimizations
are identified and discussed in terms of scalability,
flexibility, and current research efforts.

1 INTRODUCTION

ADS defines the next-generation of military distributed
simulation systems, intended to support executions
distributed across LANs and/or WANS, with up to 100k
entities at up to 50 sites (DoD M&SMP 1994). An
ADS architecture should consist of:

“The structure of the components of a program /

system, their interrelationships, and principles

and guidelines governing their design and

evolution over time.” (DoD M&SMP 1994)

Such an architecture is intended as a reference for use
by designers of more detailed architectures, such as a
collection of training simulators, or a communications
modeling architecture. It should also provide the basis for
standardization of terms, and clear identification of roles
and responsibilities for distributed simulation
components. The ADS architecture is further tasked with
defining an interaction paradigm which will support
higher degrees of fidelity, interoperability, and numbers
of simulation entities than current DoD paradigms.
1.1 Background
We identify three uses of distributed simulation by the
military. The test and evaluation community stimulates
real devices within a synthetic environment. Warfighter-
in-the-loop simulators may be linked together for
training purposes. Abstract models, either continuous or

634

discrete event, are used to investigate military systems
and doctrine. These different uses require differing
amounts of linkage to the progress of real time. The
first requires hard real time deadlines, the second requires
soft real time deadlines within the several hundred
millisecond human perception tolerance. The third is not
bound to real time except with regard to producing
results within the time frame of the study. Any of these
classes of simulations may be distributed across local,
high-speed communications (such as FDDI or a shared
memory ring), or slower, nation-wide networks.

The ADS community loosely classifies such
simulations into one of three categories:

“Live simulation involves real people
operating real systems. Virtual simulation
involves real people operating simulated
systems. Constructive simulation involves
simulated people operating simulated systems. ”
(DoD M&SMP 1994)

For our purposes, distributed simulation is then
defined as a networked combination of independently
executing live, virtual, and constructive entities that
share a common view of simulation time, interacting via
a prearranged set of data types and events (while outside
the current definition, we also include environmental
entities, such as cloud models, into the definition).

Two standards currently exist to link together
simulations which meet this definition, DIS and ALSP.
Below, we briefly describe and critique these approaches
in terms of the ADS system goals.

1.2 DIS

Live, virtual, and constructive entities have been
successfully integrated using the Distributed Interactive
Simulation (DIS) protocol (DIS 1994). DIS provides a
standard definition of data to be exchanged between
simulations and an unreliable protocol for transmission.
Each entity in a simulation continuously produces entity
state descriptors, which are broadcast to all other
simulation hosts. Specific event types are defined, such
as detonations and collisions, which are also broadcast to
all simulation hosts. Repeated broadcasts are done to

Architectural Optimizations 635

address dropped packets and late joiners which thus
receive up-to-date copies of all entities’ published states.
Simulation time is loosely tied to the advancement of
wallclock time. No causal ordering is required, other
than the dropping of packets older than current time
minus 250 milliseconds. Dead reckoning of an entity's
position is used to minimize the frequency of entity state
broadcasts.

DIS has been shown to reliably support small
exercises of hundreds of entities. Significant scaling
problems have been encountered in exercises with greater
numbers of entities, primarily due to the linear increase
of entity state broadcasts. As entities are added, two key
bottlenecks have been identified: the bandwidth of the
connecting network, and the compute cycles spent
servicing communications /O at each host. The largest
DIS exercise to date has been the approximately two
thousand entities supported in STOW-E, which used an
application gateway to compress and reduce data packets
at the WAN level (Van Hook et al. 1994).

No standard tools or techniques are currently defined
to support the determination of valid interoperability via
DIS. Work is in progress to extend the DIS protocol for
more sophisticated interactions between entities.

1.3 ALSP

The Aggregate Level Simulation Protocol (ALSP)
described in Weatherly et al. (1991) provides an
interoperation mechanism for simulations of combat
entities modeled at a combat unit level. The protocol
provides time synchronization and data transfer between
simulations.

The simulations cooperate to maintain a distributed
database of public attributes, while private attributes of
simulations are maintained within the simulations
themselves. Public attributes are written only by their
owners, and mechanisms exist to migrate ownership of
attributes. Translators are implemented for each
simulation to convert private attributes to public
attributes, and to provide reflections called ghosts of
remotely simulated attributes to the local simulation.

Globally consistent time is provided to the federated
simulations by blocking the advance of local simulation
time until it is safe to advance. The simulations must
provide a value called lookahead which is used to allow a
slight difference between local clocks and enable more
than one simulation to run concurrently. ALSP is based
on a modified Chandy-Misra conservative
synchronization algorithm (Chandy and Misra 1981),
with null messages for deadlock avoidance. The time
advances tend to be very coarse grained.

Gateways are used to interconnect the simulations,
passing attribute updates and events, and to coordinate
time. The communication mechanism is a reliable
broadcast protocol.

ALSP simulations tend to have infrequent time
steps, and infrequent exchanges of attributes and events.

This coarse grained advancement of simulation time is
not appropriate for virtual (i.e. human-in-the-loop)
simulation without significant modification. In addition,
the synchronization algorithm may not scale to the size
required of ADS systems.

1.4 Current Techniques: Summary

DIS and ALSP embody the majority of interoperability
standards for independently developed simulations in the
DoD community. They allow simulations the freedom
to be implemented in any way the developer sees fit,
provided the public data and events are generated
according to the protocol. Modelers have the additional
burden of understanding and implementing the distributed
systems aspects of a distributed simulation. Vendors and
researchers have developed libraries that are coming into
more common usage, but there are no architectural
distinctions between the system modeling and data
distribution aspects of a distributed simulation.

The level of understanding currently required of
modelers is acceptable, since the DIS and ALSP data
distribution/management schemes are very simple, and
are moderately easy for numerous model developers to
implement in an interoperating fashion. However, the
distributed system protocols required to meet size,
fidelity and reliability requirements for ADS will be
substantially more complex.

2 THE ADS ARCHITECTURE

The ADS architecture outlined in this paper describes the
results of an ARPA-sponsored project to define a new
standard for distributed simulation interoperation which
would allow a greater number of entities, operating at a
higher level of fidelity, than is possible with current
DoD standards. Support for a VV&A process was also
required as part of ARPA’s interoperability goals.

Since a DoD-wide standard was desired, the presented
architecture had the additional requirement of being able
to support multiple classes of federations, where a
federation is defined as a number of independent models
sharing a common data dictionary, defined entity actions,
and compatible views of simulation time. Federations
will likely have differing requirements for data
throughput, synchronization, and realtime performance.

The final ARPA goal was to define a flexible
architecture, capable of encapsulating continual
improvements to technology at the modeling, distributed
system infrastructure and networking service layers. This
paper addresses only the runtime performance
optimizations of the architecture, as outlined in the
following three components.

Simulation Runtime Support (SRS): responsible for
startup, execution, synchronization and control of a
distributed simulation. All communication between ADS
simulations is via the SRS. The SRS is the primary
focus of this paper.

636 Mellon and West

Execution Manager: performs high-level flow
control using exercise context information, such as
number of entities versus the fidelity of data. For
example, if the SRS has signaled that realtime
performance goals are not being met, the Execution
Manager may reduce fidelity in non-critical sections of
the battlefield, or remove players from the system until
the volume of data being distributed is low enough to
permit the achievement of performance goals.

Data Collector: responsible for the archiving of data.
It is primarily a log of data collected for post-mortem
analysis. The volume of such data is usually large, and
is separated out from SRS-provided data because of the
significantly different performance and availability
requirements.

3 ARCHITECTURE DESIGN APPROACH

To meet the ADS goals of flexibility, common code
reuse, and evolutionary development of components, a
philosophy of strict encapsulation of functionality was
followed. A decision was made to clearly separate the
simulation and distributed system functionalities in the
architecture. This approach is justified as follows:

1) The complexity of distributed data management
for ADS will be sufficiently more complex than
DIS/ALSP that a common-code library approach may be
required to ensure consistent execution of protocols at
each host.

2) Since many of the techniques required to make an
ADS system execute efficiently are still in the
experimental stage, all distributed system functionality
should be encapsulated. Additionally, the network and
compute resources available are constantly changing.
Given that the optimization of a distributed system
consists primarily of trading off between local compute
resources and network bandwidth, the best optimizations
for a given federation will continually evolve.

To address the ADS goal of increased
interoperability, we first define interoperability as
requiring: 1) a valid set of modeling behaviors (i.e. a
fully defined set of data types and entity actions); and 2)
synchronized distributed computing operations (i.e.
data/event exchange and execution control). DIS currently
address these sections via a single protocol definition.
This ADS architecture proposes two separate standards
for these two distinct areas, where the first is defined by
each federation using the ADS architecture, and the
second is defined by the SRS component of the
architecture.

The level of fidelity and number of entities in an
ADS system will require substantial optimizations at the
network transport layer, in particular, the sharing of
global state. Such optimizations are discussed in:
Section 5.0: Optimizations of the GTD.

The existing DIS standard was used as the basis for
this architecture, extended as required for ADS

requirements. A top level comparison of DIS and ADS
architectural responsibilities is given in Table 1.

Table 1: Architectural Views of ADS and DIS

DIS I_ ADS Federations II ADS SRS

Federation-wide Same N/A

definition of data types
and events

Blind-push of entity § Same N/A
states into the public
view

Unreliable transport | Publish Many internal transport

mechanism to publish | mechanism mechanisms
|_state/events assumed reliable
Dead reckoning used | Shared-state Many classes of
to reduce transmissions | usage information | network optimizations
of state given to the SRS | may be used internally,
to allow network | dynamic adaptations
optimizations possible ‘
Changes slowly Will change | May change quickly to
slowly support R&D and
incorporation of new
technology

3.1 Entity Definition

The primary clients of the SRS are entities: simulation
objects consisting of encapsulated state and behavior.
Further, an entity’s total state consists of both public
and private data.

* Private data is created, changed and maintained
strictly by the entity, for use only by that entity.

* Public data is created and changed strictly by the
owning entity, for use by any entity.

Entities interact (via the SRS) by:

» Reading other entities’ public states, and changing
their own public state for others to read. e.g.:
position data.

» Generating public events. e.g.: fire events.

* Specialized communication to support distributed
sub-entity modeling and/or model infrastructure
support. e.g.: invocation of modeling services,
experimental interfaces between models.

3.2 Global Ground Truth Data Definition

Global Ground Truth (GT) data is defined as the union of
all entities’ public states. Further, we assume:
» Events may be considered as GT data (with a short
temporal existence).
+ Entities at any host may access any GT data.
¢ The reading and writing of Ground Truth data is the
primary communication mechanism for ADS
simulations.
Thus, from the viewpoint of the architecture,
entities may be treated primarily as producers and
consumers of Global Truth Data.

Architectural Optimizations 637

4 SIMULATION RUNTIME SUPPORT

The SRS encapsulates the distributed and real-time
support tools required for a federation execution. Where
possible, the SRS will be composed of libraries and
tools reusable across ADS models, although host-
optimized implementations of the SRS are allowed.

The SRS is separated internally into a number of
internal components, each of which addresses one
specific area of the SRS’s responsibilities. Of the three
entity interaction types, specialized communications are
expected to be a small portion of network traffic, and a
relatively simple service to provide. The remainder of
this paper focuses on the GTD, an internal SRS
component which is responsible for the sharing of global
Ground Truth (GT) data.

4.1 The Ground Truth Database (GTD)

The GTD presents a consistent memory model of global
Ground Truth data to ADS simulations across distributed
hosts. It formally defines a layer between entity
behavioral modeling and the mechanics required to
distribute information in a distributed system. This
allows incremental improvements to how information is
distributed, with no changes required at the modeling
layer.

Consistent memory models across a network have
been presented in many non-ADS systems, such as Linda
(Carriero and Gelernter 1986), and ORCA (Bal et al.
1990). It has also been discussed informally in the DIS
community. This architecture formalizes the definition of
such a paradigm for ADS, and outlines the characteristics
of ADS systems which may be used to optimize its
performance.

To access GT data, entities register with the GTD
the types of data they require. Published data items
meeting the stated requirements are then available on a
blocking read basis from the GTD. Interrupt-driven
access is also provided: an entity may register triggers
with the GTD, based on data types or values occurring in
the GTD. To publish GT data, entities create a data item
in the GTD, and write to it whenever it changes value.

We isolate this class of data (GT) from others in the
system because of the stringent performance
requirements, the volume (and mapping) of data items,
and the differing synchronization techniques used. One
key design decision is to keep the amount of data in the
GTD as small as possible. This restricts the amount of
data passing through a potential performance-critical
bottleneck. Examples of data types in the GTD: entity
positions, dynamic environmental data. Examples of
data types not in the GTD: performance data on the
runtime system, data logged only for post-mortem
analysis, and specialized communication between
models.

S OPTIMIZATIONS OF THE GTD

Clearly, distributing copies of all GT data to all entities
1s not feasible for the majority of ADS systems. Instead,
we require the GTD to provide the potential for access to
all GT data, and only distribute copies of specific GT
data items to entities that actually require them. Current
technology does not permit an efficient, automated
mechanism of doing this, thus ADS simulations are
required to define the minimum subset of GT data they
requirc for accurate behavioral modeling. Additional
optimizations are possible by defining the simulation’s
characteristics of how the data is to be used, as well as
the characteristics of the GT data items themselves. The
set of these application-specific characteristics relates
only to their view of shared GT data, and thus is referred
to as shared-state usage declarations.

The use of application-specific characteristics breaks
the pure isolation of simulation and distributed system
activities, but must exist as a controlled tradeoff in some
federations to meet performance goals. A flexible set of
optimization techniques is required, as optimizations will
differ across federations in both application and hardware
characteristics, and the level of optimizations required.
Further, we distinguish between federation-level
optimizations, such as minimizing the amount of shared
data or restricting how it may be used, and distributed
system optimizations, such as only shipping data to
where it is required and only updating it when required.
As outlined in Table 2, the GTD is only responsible for
the second class.

Table 2: An Allocation of Distributed
Simulation Optimizations to ADS Components

Federation actions Simulation actions Distributed system

actions (i.e._the SRS)

Define as small a set of N/A N/A
(shared) public data as
possible

Define set of interests,
recommended data
accuracy levels, other

Interest
declarations, other
shared-state usage
declarations

Find matching data (on
any host)

optimizations
Define data dictionary

GT data read/write

Transport data to
appropriate hosts via
best-available
mechanism

Define classes of entity
actions and events

Generate event

Transport data to
appropriate hosts via
best-available
mechanism

Pre-runtime

Runtime

Runtime

The distribution of global GT data is treated as an
abstract data sharing problem. Given that the overall
system may be viewed as a collection of distributed data
sources and data sinks, we assume the following:

« each host in the distributed system will consist of

zero or more sources and sinks.

« each data source may lead to multiple data sinks.

638 Mellon and West

« each GT data item is single-writer, i.e. changes to a
data item may only occur at one point in the
distributed system.

« the mapping of data sources to data sinks is both
predictable and relatively static, i.e. the mapping of
sources to sinks will not change as frequently as the
data items change value.

+ a weak consistency data model may be used, i.e. data
may be allowed slight inconsistencies in both
simulation time and value. Further, the amount of
inconsistency allowed will vary across sinks.

For our purposes then, the distribution of GT data
reduces to a distributed cache management problem,
similar to that of shared memory hardware mechanisms
(Chaiken et al. 1991). Further, optimizations to
network traffic may be accomplished via the weak
consistency and single-writer characteristics of the
application.

5.1 A Distributed View of the GTD

The GTD as outlined above may be implemented in any
number of ways, dependent on underlying network
configurations and data delivery requirements. An
excellent measure of design abstraction was to examine
the GTD interfaces in terms of implementation on both
LAN/WAN-connected distributed processors and shared
memory multiprocessors. This allowed us to determine
what areas of functionality should be encapsulated within
the GTD, as they only related to the distributed nature of
the GTD. This section presents a view of the GTD in a
generic LAN/WAN environment, intended to illustrate
the scaling potential of the GTD.

5.1.1 Local Cache (LCache)

The LCache maintains all dynamically changing global
Ground Truth data produced by, or required by, entities at
the local host. LCaches are implementation dependent,
and could consist of one per LAN, one per processor, one
per entity, etc. A LCache’s primary characteristic is
that it is tightly bound to its local entities, i.e. they may
exchange data at high volume rates, with low latency
costs. Some form of shared address space is expected.
LCaches may also be hierarchical in nature: i.e. a
LCache may have other LCaches as clients, thus serving
as a directory-based caching scheme.

5.1.2 Interest Manager (IM)

The IM determines what set of data is required by all
local entities, unifying their individual requirements into
a set of requirements for the local host. Entity
registration of triggers/actions is provided to support
asynchronous data delivery.

5.1.3 Cache Coherence Mechanism (CCM)

The CCM is responsible for maintaining cache coherence
for the GTD across the Local Caches at each host. It
contains Transmission Optimizers, used to reduce the
amount of data sent to remote hosts. The shared-state
usage information provided by the simulations is used to
decide what data is required at which hosts at what level
of resolution. The CCM uses the most appropriate
transport mechanism to send locally generated data to
hosts which have registered an interest in it. Copies of
data items in remote caches are only updated when the
source data item changes.

Interest declarations are used as a cache pre-fetch
control mechanism, thus avoiding the latency of cache
miss and fetch solutions.

Host 1 Host 2 Host 3 Host 4
M IM IM IM
|
'Global Truth
Database LCache | Cache LCache LCache
CCM [el:] CCM CCM
N AN

Figure 1: Mapping of GTD Components to Hosts
5.2 Classes of Shared-State Declarations

As stated above, the GTD requires a mechanism for a
simulation to describe both the subset of GT data it
requires, and characteristics of how the data is produced
and used. This section introduces three classes of shared-
state declarations that may be used to optimize the
network flow of traffic internal to the GTD.

5.2.1 Interest Declaration

In the general case, we assume that not all GT data is
required by all entities for the full simulation execution
to accurately model their behavior. We also assume it is
practical for entities to specify what GT data is required.
Clearly, general statements of interest are easier for the
modeler to provide, but will result in larger volumes of
GT data arriving than is actually required. Precise
statements of interest will result in the minimum
amount of GT data arriving, but may not be practical to
provide due to computational complexity or highly
dynamic behavior in the simulation. For any given
federation, there will exist an optimal balance between
precision of interest statements and available compute
cycles or network bandwidth. Note that federations
where the majority of GT data is needed at many hosts is

Architectural Optimizations 639

inherently non-scalable. If the amount of required shared
data is greater than can be supported via available
infrastructure, then that federation must be redefined or
more resources acquired.

Given the interest declarations of entities at a host,
the GTD is responsible for maintaining at that host the
set of GT data items that match the union of the local
entities’ interests. The GTD must support dynamic
changes to that set of GT data items. The GTD must
also support changes to the union of entity interests, as
the scope of GT data required at a host may change due to
changes in an entity’s internal state. For example, if an
entity has a limited sensing range, it is not interested in
entities whose current positions fall outside radius X of
the sensing entity’s current position.

A flexible predicate-based approach is proposed,
where modelers can define either strict or loose
predicates, depending on the needs and characteristics of
their federation. Predicates must be able to be executed at
remote hosts, as the GTD will try to avoid network
transmissions of GT data items based on those predicates
(i.e. source-based filtering). Also note that due to their
similarities predicates may be combined at the data
source to reduce computational load. It is expected that
federations will define a small a set of predicates as is
practical, and data classes that lend themselves to simple
predicate unification. Also note that super-sets of
predicates may be used to further reduce computational
loads (at the expense of increased network loading). This
may be compared to cache lines, where the data required
at a cache will bring with it a larger grain of data
unrelated at the application layer, but is related at the OS
layer for efficiency.

Simulation

Tank 1 (ES PDU)
Modeling Statement:: all lagks
within 10km of my current position type
position
i
Modeling Support Luyer ' Derived Field
ACTION The support layer may add

translate into lower-level interest satemernts . "
derived fields o an ES PDU.

ACTION Such ficlds are not visible to
create any needed (non-GT) data the simulation layer, but may
required be used in CCM -level interest
declarations.

Uses CCM Statement: all recards with

Cache Coh erence Mechanism
(CCM)
ACTION
evaluate interest statement on all GT data items at all hosts
ACTION

transport matching data back via best-available mechanism
Figure 2. Levels of interest management
Two interest management languages are proposed:

one at the modeling support level, and a separate
language for internal use by the GTD. Clarity and ease of

interest expression at the modeling level requires a
dynamic, computationally complex expression syntax.
Such expressions may be too expensive for the GTD to
evaluate continually on thousands of remote GT data
items. An example of interest expression at both the
modeling and GTD levels is given in Figure 2.

5.2.2 Variable Resolution Data

In the DIS community, it has been shown that not all
consumers of GT data require it at the same level of
resolution as it was produced. Given that this holds true
for ADS systems, we propose a weak consistency data
model, where data is allowed to have slight
inconsistencies in resolution and time. For example, DIS
data is allowed an inconsistency of 250 milliseconds of
error before it is considered invalid. Any jitter in this
latency will result in positional inaccuracies. Therefore,
at any given point in simulation time, it is valid to have
the same data item with slightly differing values at
multiple hosts in a DIS system. It has also been noted
that some DIS models could perform accurately with
even lower resolution, and schemes for variable
resolution data have been proposed (Cohen 1994, Calvin
et al. 1995). Such schemes are generally intended to
address the problem of wide-area viewers, which might
otherwise defeat interest management optimizations
because they can sense across very large areas of the
simulated world, and thus are interested in the majority
of GT data. We include this principle in ADS via the
following approach.

When an entity interest registration is done, the
entity is also required to state the preferred resolution for
matching GT data items, and a minimum resolution
value. If the lower bound of resolution cannot be met,
the GTD will throw an exception, which either the entity
itself or the Execution Manager component may handle.
Dynamic flow control and load balancing through the
network may be accomplished, controlled by either the
GTD itself and/or the Execution Manager. Entity
migration may also occur to alleviate the problem.

For example, an entity simulating the behavior of a
satellite may only be able to detect the position of
ground-based entities with an accuracy of 100 meters.
The GTD thus will only need to update the positions of
ground-based entities for the satellite entity when they
change by more than 100 meters.

Note that excessive use of this feature places a large
computational burden on the GTD, as it must evaluate
changes to GT data items at the source to see if they
have changed enough to require updating remote copies.
While it is possible to unify such comparisons at the
source (with possibly overlapping sets of resolution), it
is suggested that federations define a small set of valid
resolution levels at which simulations subscribe.

640 Mellon and West

5.2.3 Predictive Contracts

Dead Reckoning (DR) (DIS 1994) in the DIS
community has been shown to reduce network updates
for entities whose changing positions may be predicted.
To expand the possible use of DR-like algorithms, we
define a parent class: Predictive Contracting.

We postulate the following: any GT data item that
tends to change over time in a predictable fashion may be
closely matched by a function f{t) which will closely
match that data item’s probable changing value over
time. f{) is available to the reader, who then only needs
the current value of 7. Note the GTD may evaluate the
f(t) transparently to the reading model, thus providing a
best-view of that data item. Given this assumption, the
GTD may make the following transmission
optimization: changes to GT data items with a predictive
contract are only sent if those changes fall outside the
range of f(t). Example classes of predictive contracts
include: DR, aircraft following a set of waypoints,
weather patterns that follow a set of scripted changes.

Three primary advantages are obtained by this
approach:

1) Independent processing of a CPU-intensive
function is done by the GTD -- thus providing a clean
division of tasks for parallel processing.

2) Given that extrapolation of a local copy (at time
t) to the current time is done by the GTD, a potentially
expensive operation is done only when an entity reads
that data item.

3) The best-effort approach provided by variable
resolution data is enhanced by a predictive contract which
may smooth out variance in resolution introduced by the
underlying network.

5.2.4 Ownership Migration

In some instances, it may be advantageous to migrate the
source of a data item closer to a sink that requires it very
precisely. For example, a missile fired at a plane requires
a very accurate view of the plane’s location. By
migrating ownership of the plane’s position value closer
to the missile simulation (possibly within the same
simulation as the missile), more accurate values may be
used without increasing the load of the network. Also
note that some simulations may require ownership
migration to support V&V -- if an entity moves into a
specific region of the battlefield under the control of a
different simulation, control of that entity may need to
migrate to the new simulation.

5.2.5 Sectorization

The use of spatial sectorization is a well known
optimization for parallel simulations (Beckman 1988,
Mellon 1994). Van Hook (1994)) offers an approach for
applying sectorization to the DIS/ADS problem.

Sectorization is the process of breaking simulation space
into sectors, then tracking the location of entities to
which sector they are currently in. When an entity
senses, it only checks against other entities which are
currently within their sector (or possibly neighboring
sectors). Sectorization may be considered a low cost,
first-order pass through entity positions to eliminate
entities which are clearly outside sensing range.

From the viewpoint of this ADS architecture,
sectorization is a federation-level optimization, in that it
determines how data is used. As outlined in Figure 2, a
layer in the model may automatically add derived
information, such as sector locations, to GT data items.
Standard interest expressions may then be done in terms
of the derived information.

5.2.6 SRS Optimization Summary

Figure 3 shows the relations between the three SRS
optimizations listed above. The federation-level
optimization (sectorization), would reduce the amount of
GT data being accessed, before interest management is
applied.

Unoptumised Global Ground Truth
data set potentially required at
each site

ion; allows the SRS to provide | Subsetof GT data
the minimum set of GT data possible o each required per site
site.

Yariable Resolutjon: information allows the
SRS 1o optimise how ofien data item updates
are required at each site.

U pdates to GT data
required per site

Updates to GT data required per site
that result in a network transmission

I : allow the SRS to minimize
how oflen data item updates are actually
transmitted acros s the network.

Figure 3: Optimization Summary
6 CONCLUSIONS

This paper has presented an architecture which has the
flexibility and modularity to adapt as technology evolves
by strict encapsulation of the transport mechanisms and a
flexible shared-state view of the interface. It allows for
larger numbers of entities interacting at a higher level of
fidelity than existing systems. This is primarily
accomplished by replacing the broadcast approach of
current systems with a minimum data flow approach.
Access to a simulation’s minimum data requirements is
provided to the SRS in the form of interest statements,
resolution change sensitivity, and behavior predicting
information. As performance depends on application-
supplied information, the policy enforced by a particular
federation will make or break the realized performance.
The SRS must, however, give sufficient feedback about
problems and their causes to planners and exercise

