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ABSTRACT

We compare the design and implementation of a par-
allel simulation of a traffic flow network using two
different approaches: event-driven and time-driven.
Our experiments with the sequential implementation
of the two approaches correlates with previous re-
search (Nance 1971). We design a conservative paral-
lel implementation of the traffic flow problem where
we obtain a maximum speedup of 9.27 using 16 Sun
workstations running under parallel virtual machine
or PVM (Geist et al. 1993). We use wall-clock time
as a measure of execution speed. We show that
appreciable speedup can be achieved in paralleliz-
ing either the event-driven or time-driven approach.
We also show that speedup is a misleading metric
when used to compare the parallelizability of the two
approaches. Parallel performance, as measured by
speedup, may be better when the sequential perfor-
mance is poor. For example, the time-driven imple-
mentation achieved better speedup than the event-
driven implementation for few cars in the system;
however the sequential time-driven implementation
required longer to execute than the event-driven im-
plementation for few cars in the system. Similarly, for
many cars in the system, the event-driven implemen-
tation achieved better speedup than the time-driven
implementation.

1 INTRODUCTION

In this paper, we present the design and implemen-
tation of a traffic flow network using two differ-
ent approaches: event-driven and time-driven (Nance
1981). We begin by designing an efficient event-
driven approach to model the traffic low network.
Our design of the event-driven traffic model matches
the design of a time-driven traffic model (Douglass
and Malloy 1994). A parameter to the models is traf-
fic flow, a measure of the average number of cars
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entering the system for each clock tick. In the se-
quential execution of the two models for sparse traf-
fic flow, the event-driven implementation ran faster
than the time-driven model. For dense traffic flow
patterns, the sequential execution of the time-driven
model ran faster than the event driven model. This
result correlates with previous research (Nance 1971).

Using previously developed techniques to exploit
the look-ahead in the traffic model (Douglass and
Malloy 1994), we parallelize our event-driven imple-
mentation of the traffic flow model. We use the con-
servative protocol (Fujimoto 1990) for asynchronous
execution using distributed local clocks. For the par-
allel executions, we obtain a maximum speedup of
9.27 using 16 Sun workstations. This speedup is ap-
preciable since our parallel architecture is parallel vir-
tual machine or PVM (Geist et al. 1993), not known
for fast communication, and our processes ran in the
background using the Unix facility “nice”. Also, we
use wall-clock time as a measure of execution speed.
We then compare the parallel implementation of the
event-driven approach to the parallel implementation
of the time-driven approach. We draw some interest-
ing conclusions about the parallelizability of the two
models.

In the next section we discuss background for our
work including a discussion of PVM and the conserva-
tive approach to parallelizing simulation. In section
3, we overview the event-driven and time-driven ap-
proach, followed by the results of our experiments in
4. In section 5, we draw conclusions.

2 BACKGROUND

The protocols used to design and implement parallel
simulation programs fall broadly into two categories:
conservative and optimistic. We begin this section
with a brief overview of these two protocols. We then
present the features of PVM, the software package
that we use to construct a parallel machine using a
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network of Sun workstations.

2.1 Protocols for Parallel Simulation

The protocols currently used to parallelize a simula-
tion program fall into two general categories: conser-
vative and optimistic. Excellent surveys of these ap-
proaches can be found in Fujimoto (1990) and Righter
and Walrand (1989). In conservative simulations, a
processor does not execute an event e at simulation
time ¢, until all messages with time stamp less than
te have been processed. This sequencing of events
is known as the local causality constraint and strict
adherence to this constraint guarantees that the ex-
ecution of event e is correct. There are numerous
conservative algorithms that differ primarily in the
manner in which they adhere to this constraint.

In optimistic simulations, a processor may exe-
cute events in any order and violations of the lo-
cal causality constraint are corrected by rolling back
the processor to a state where the constraint holds.
The optimistic approach, such as Time Warp (Jef-
ferson 1985), can produce substantial speed up due
to parallelism (Madisetti and Hardaker 1992, Fuji-
moto 1990, Baezner, Rohs, and Jones 1992, Unger et
al. 1990). An excellent variation of the Time Warp
approach can be found in Madisetti, Walrand and
Messerschmitt (1988).

2.2 Parallel Virtual Machine

Parallel Virtual Machine (PVM) (Geist et al. 1993) is
a software package that provides support for the con-
struction of a parallel computer using a network of
workstations. PVM supports a message passing com-
munication paradigm that can accommodate more
than 25 platforms, ranging from a Cray/YMP to an
80386 personal computer running the Unix operating
system. Messages may be passed between any of the
machines supported; data conversions, for platforms
that use different data representations, are transpar-
ent to the user.

3 OVERVIEW OF THE MODELS

In any simulation, it is essential that the important
details of the system under study are captured by
the model being designed. To make a fair compar-
ison of the event-driven and time-driven approach,
both models are designed to capture the important
details of the traffic flow problem that we study. In
this section, we show how the two models represent
traffic flow in a very different fashion yet successfully
capture the important details of the system with re-
spect to the movement of cars through the network.

For details of our technique to model contention in
the traffic network, see Galluscio and Malloy (1995).

3.1 Representation of the Traffic Network in
the Two Models

For both models, we represent the traffic network as a
square mesh composed of streets running in the hor-
izontal and vertical directions with traffic lights at
the intersections of the streets. The square mesh is a
flexible representation that is easily modified to pro-
duce different size workloads; this flexibility enables
us to investigate the effects of increasing the workload
on the parallelized implementations of the two mod-
els. In the parallelized version of the network, the
square mesh of streets and lights is partitioned into
subsystems called grids where each grid is assigned
to a processor. Figure 1 illustrates a traffic network
composed of two grids where each grid contains four
lights. The figure illustrates the logical view of the
network which is the same for both models; however,
the actual implementation of the network is different
in each approach.

In the event-driven approach, the simulation model
can be viewed as a model of the interaction of discrete
events occurring in the system. For example, arriving
at an intersection and departing an intersection be-
come events in the model, where each pending event is
in an event queue and system time is the time-stamp
of the currently executing event. This representation
is illustrated at the top of Figure 3.

In the time-driven approach, the activities in the
model are scanned on each clock cycle to determine
if a state change can occur in the model. Intersections
are logical structures in the model, in the implemen-
tation each intersection is represented by its corre-
sponding queue data structure as illustrated at the
bottom of Figure 3. As the simulation progresses, the
list of activities is scanned so that a car enters a street
by being inserted into the corresponding queue and
the car enters an intersection by being inserted into
the service queue for that intersection. There is no
event queue in our time-driven model. Thus, enter-
ing or departing a street is an O(1) queue operation
in the time-driven approach; in the event-driven ap-
proach, entering or departing a street is an O(log n)
operation on a priority queue where n is the number
of events in the priority queue.

From a logical perspective the models are identical
in the way cars enter the simulation and travel within
and between grids. A car enters the simulation at a
construction site labeled SOURCE_SINK. All of the
boundary streets illustrated in Figure 1 are sources
and sinks, where cars are generated according to a
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Figure 1: A traffic network composed of two grids with each grid containing four lights and twelve street segments.
In the parallel simulation, each of the grids is assigned to a processor.

fixed probability requirement. Cars may travel either
north, south, east, or west with a fixed probability
of changing direction at any given intersection. Con-
tention at the intersections is taken into account. For
example, if a car is turning left into the path of a car
going straight, then a contention mechanism inhibits
one of the cars until the other car clears the inter-
section (see Galluscio and Malloy 1995, for a detailed
description of the contention mechanism). Both mod-
els allow cars to travel between grids using message
passing in the distributed PVM environment. Cars
traveling the same direction on a grid are collected
and sent to the destination grid upon expiration of the
timing mechanism that is used to exploit lookahead.
The next section reveals any inherent differences in
the approaches.

3.2 Simulating Traffic Flow in the Two Mod-
els

Valid conclusions about the relative parallelizability
of the simulation approaches require a fair compari-
son of the two models, which in turn relies on a sim-
ilar representation of traffic. Although the models
represent traffic similarly, the simulation approaches
and the underlying algorithms differ dramatically.
The rest of this section describes the time-driven al-
gorithm, describes the event driven algorithm, and
draws distinctions between the two approaches.
Figure 2 illustrates the general algorithm used
to simulate the traffic network for the time-driven
model. The algorithm starts with a local time of zero
and iterates until the local time is equal to the in-
put maximum time. The local time is incremented
by one tick each time through the main loop. In
the main loop the algorithm first processes null mes-
sages and car messages from other processors. The

algorithm SimulateTraffic
input MazSimTime
output Simulation of this grid

begin SimulateTraffic
LocalTime =0
while LocalTime <= MazSimTime loop
while more null messages in receive buffer loop
process the null message
end while
while more car messages in receive buffer loop
process the car message
end while
if not violating local causality constraint then
update lights
process segments by
1. gen cars for source
2. consume cars for sink
3. pass cars to neighboring processors
4. move cars to adjacent segments
increment local time
end if
end while
end

Figure 2: General algorithm for parallel simulation of
a traffic flow network using the time-driven approach.

null messages must be processed early in the loop
to preserve the local causality constraint. The local
causality constraint dictates the next action. If it is
possible to proceed without violating the local causal-
ity constraint, then the algorithm updates lights and
processes street segments. Processing the street seg-
ments involves generating new cars at the sources,
consuming old cars at the sinks, passing cars to neigh-
boring processors, and moving cars to adjacent local
segments. Two points of interest are that the clock
always increments by a single tick, and that cars move



Advancing Time In Parallel Simulation 653

_____ EVENT LIST

strect segment

Figure 3: The representation of street segments for the two traffic flow models. The model at the top of the
figure is the event-driven approach where cars traverse the traffic network by being processed as events. The
model at the bottom is the time-driven approach where cars traverse the traffic network by being inserted or

removed from a queue.

directly from street segment to street segment.

The event is the touchstone characteristic of the
event-driven approach. The allure of the event driven
model is its extensibility; extensions to an event-
driven simulation are handled by adding events. The
algorithm for simulating the parallel event-driven
model is provided in Figure 4. The algorithm uses an
event_list, a main loop, and five distinct event-types.
The main loop iterates until the local time is greater
than or equal to the maximum simulation time. The
first action of the main loop is to remove the event
with the minimum time stamp from the eventlist,
and update the local clock to the time stamp of that
minimum event. The minimum event is then pro-
cessed according to its event type. Processing the
minimum event may cause other events to be inserted
into the eventlist. Note that the clock may incre-
ment by an arbitrary amount corresponding to the
time stamp of the minimum event.

Differences between the event-driven and time-
driven approaches arise in the way time is handled
and the way cars move through the simulation. Those
differences impact the speed and flexibility of the sim-
ulation techniques. The event-driven approach incre-
ments the clock by an arbitrary amount that corre-
sponds to the minimum time-stamped event on the
current event list. Therefore, large jumps in time are
expected for sparse traffic networks. On the other
hand, the time-driven approach checks for new tasks

Table 1: Summary of the statistics computed by the
event-driven and time-driven models when executed
on 16 processors. These statistics were gathered for
the traffic model with a workload of 576 lights and a
traffic flow of 3.5 million cars in the system.

cars cars total
Statistic || generated ezxiting messages
Event 3,451,303 | 3,438,014 | 479,952
Time 3,359,579 | 3,345,447 | 479,921

to perform after every tick. Unproductive check-
ing would be expected for sparse traffic flow net-
works. Another difference between the approaches
is the way simulated cars proceed through the sim-
ulation. The time-driven approach moves simulated
cars from street to street using O(1) queue operations;
however, the event-driven approach uses an event list,
implemented as a priority queue, and moves simu-
lated car events in and out of the event list using
O(log n) heap operations. As a result, the sequen-
tial time-driven approach may be much faster for a
packed traffic network, and only moderately faster
for a sparse traffic network. From our experience the
event-driven model is more easily extended and en-
hanced.
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algorithm SimulateTraffic

input Futureeventslist, travel_time (10),
crossing-time (2), and next_light (5)

output simulation time

events ARRIVE, LEAVE, LIGHT, RECEIVE, SEND

begin SimulateTraffic
while TIME <= maz_timc loop
event = get_event(event_list)
TIME = cvent.time
case event.type
ARRIVE: process_arrival
LEAVE: process_leave
LIGHT: process_light
RECEIVE: process_receive
SEND: process.send
end case
end while
end SimulateTraffic

Figure 4: General algorithm for parallel simulation
of a traffic flow network using the event-driven ap-
proach.

4 EXPERIMENTAL RESULTS

Both the event-driven and the time-driven models
are parameterized, where the parameters describe the
probability that a car will turn, the length of the sim-
ulation, the numbers of processors, the light interval,
the probability that a car is generated at a source,
and the number of lights (and streets) in the model.
We define light interval as a triple (r, g,y), where r is
the number of clock ticks that the light is red, gis the
number of clock ticks that the light is green, and y is
the number of clock ticks that the light is yellow. To
facilitate our comparison of the approaches, we keep
the first four parameters fixed and vary the final two
parameters.

We use the fifth parameter, the probability that a
car is generated at a source, to control traffic flow:
the denseness or sparseness of the traffic as it flows
in the network. We vary this parameter from 0.00001
to .35 where the first value results in an average of
100 cars being generated during the simulation and
the second value results in an average of 3.5 million
cars being generated during the simulation.

We use the final parameter, the number of lights
(and streets) in the model, to control workload. We
vary this parameter in our experiments so that the
number of lights is a perfect square ranging from 16
to 576 lights in the traffic network. Increasing the
number of lights induces a corresponding increase in
the number of streets, which results in a greater num-
ber of cars in the system.

This section begins by presenting summary statis-
tics to show that the implementations of the two mod-
els are similar in their representations of the simu-
lated traffic network. We then present the results ob-
tained by varying the parameters that describe traffic
flow and workload.

4.1 Summary Statistics

The summary statistics in Table 1 illustrate that the
implementations of the event-driven and time-driven
models represent the same traffic network. The sum-
mary was garnered by executing each of the parallel
implementations on a network of 16 Sun SLC work-
stations. The data in Table 1 represents averages over
30 executions of the simulation with a treffic flow of
3.5 million cars, or an average of 3.5 cars per street
on a simulation grid, and a workload of 576 lights or
36 lights in the system.

The first column in Table 1, cars generated, il-
lustrates that both models generated similar num-
bers of cars along the border of the network with
3,451,303 cars generated for the event-driven ap-
proach and 3,359,579 cars generated for the time-
driven approach. The two numbers in this first col-
umn differ by one percent.

The second column in Table 1, cars eriting, indi-
cates that similar numbers of cars exited both systems
with 3,438,014 cars exiting for the event-driven ap-
proach and 3,345,447 cars exiting for the time-driven
approach. The two numbers in this second column
differ by one percent.

The third column in Table 1, total messages, indi-
cates that both models generated similar numbers of
messages during the parallel simulation with 479,952
messages generated in the event-driven approach and
479,921 messages generated in the time-driven ap-
proach. The two numbers in this third column differ
by one percent. There are two types of messages gen-
erated during the executions: null messages and car
messages. Null messages are required in the conser-
vative approach to avoid deadlock.

4.2 The Effect of Increased Traffic Flow on
the Two Models

Figure 5 illustrates the effect of increased traffic flow
on the execution time of the two models. For the
graph, the vertical axis indicates execution time in
minutes and the horizontal axis indicates traffic flow
as it increases from an average of 100 cars in the sim-
ulation to 3.5 million cars in the simulation, where
each simulation runs for 100,000 clock ticks.

For the graph of Figure 5, the solid line (diamond)
and the dashed line (plus sign) compare the sequen-
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Figure 5: This figure illustrates the effects of increas-
ing traffic flow density on the average execution time
of the event-driven implementation and the time-
driven implementation. For the experiments, traffic
flow is increased from an average of 100 cars to 3.5
million cars in the system. The number of lights in
the traffic network is held constant at 576 lights for
all executions. Time is given in minutes and the par-
allel executions were run on a network of 16 SLC Sun
workstations.

tial execution times of the models; these lines illus-
trate the behavior of the two models for sparse and
dense traffic flow and they correlate with previous re-
sults (Nance 1971). For sparse traffic flow, where the
numbers of cars generated varied from 100 to 100,000
cars, the event-driven implementation executed faster
than the time-driven implementation. For dense traf-
fic flow where the numbers of cars generated varied
from 100,000 to 3.5 million, the time-driven imple-
mentation executed faster than the event-driven im-
plementation.

In addition to the relative speed of the sequential
implementations of the time-driven and event-driven
approaches, Figure 5 also indicates the number of cars
in the simulation at the break-even point. The break-
even point in the comparison of the sequential execu-
tions represents the number of cars required so that
the running time of the two implementations is the
same. Consider that, in the time-driven implemen-
tation, a list of 2304 events (576 lights x 4 service
queues at each light) must be scanned on every clock
tick, regardless of the time of the next event. Thus,
on each clock tick, the running time of the time-driven
approach is 2304 O(1) queue operations plus the time
to process the events in the queues that are ready to
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Figure 6: Comparison of speedup for varying densi-
ties of traffic flow in the network.

be processed.

The event-driven implementation is not required
to process events at every clock tick but can advance
time to that of the next scheduled event. As Fig-
ure 5 indicates, the break-even point occurs in the
system that contains 100,000 cars over the execution
time. Since the two implementations ran for 100,000
clock ticks and 100,000 cars are generated in each
simulation, an average of one car is generated at each
tick. For traffic flow densities less than 100,000 cars,
the event-driven implementation ran faster than the
time-driven implementation because it can increment
simulated time to match the time of the next sched-
uled event.

Figure 5 further indicates that for the sparsest traf-
fic flow of 100 cars, the event-driven implementation
ran 3.7 times faster than the time-driven implemen-
tation and for the densest traffic flow of 3.5 million
cars, the time-driven implementation ran 2.6 times
faster than the event-driven implementation. A sim-
ilar pattern of execution times is illustrated for the
parallel execution of the two models. In the par-
allel simulations for sparse traffic flow, the event-
driven implementation ran faster (9.9 minutes) than
the time-driven implementation (11.3 minutes). For
dense traffic flow, the time-driven implementation ran
faster (17.6 minutes) than the event-driven imple-
mentation (46.9 minutes). Thus, if execution speed is
the prime concern, the event-driven implementation
performs better for sparse traffic flow and the time-
driven implementation performs better for dense traf-
fic flow.

However, the pattern illustrated above for execu-



656 Galluscio et al.

tion time is reversed when considering the speedup
achieved in the paralle: executions of the two models.
Figure 6 compares speedup for varying densities of
traffic flow ranging from 100 to 3.5 million cars gen-
erated during the simulation. The implementations
of the time-driven approach run slower than the im-
plementations of the event-driven approach for sparse
traffic flow. However the time-driven implementation
achieves better speedup than the event-driven imple-
mentation for sparse traffic flow; this can be seen
in Figure 6 where the time-driven implementation
(solid line in the graph) shows larger speedup than
the event-driven implementation (dashed line in the
graph). This higher speedup for the time-driven im-
plementation for sparse traffic flow results from the
slower sequential execution speed, since this results
in a higher ratio when computing speedup.

4.3 The Effect of Increased Workload on the
Two Models

In this section we present the results of our compar-
ison of the two models with different levels of work-
load. Figure 7 illustrates the effect of increased work-
load on the execution time of the two models. For
the graph, the vertical axis indicates execution time
in minutes and the horizontal axis indicates the num-
ber of lights in the system as they increase from 16
to 576 lights. All data was collected with the traffic
flow density held constant at one million cars in the
system.

A comparison of Figure 7 and Figure 5 illustrates
that varying traffic flow and workload has similar ef-
fects on execution time. When the traffic network
contains few lights, the event-driven implementation
executes faster than the time-driven implementation;
when the traffic network contains many lights, the
time-driven implementation executes faster than the
event-driven implementation.

Figure 8, illustrates that increasing the workload,
improves speedup. Previous research has shown
that when communication is expensive, increasing the
amount of work performed by each processor can off-
set the communication cost and result in improved
speedup (Carothers et al. 1994, Douglass and Mal-
loy 1994) The graph in Figure 8 illustrates that the
increase in speedup was similar in both models.

5 CONCLUSIONS

In this paper, we have presented the design and im-
plementation of a parallel simulation of a traffic flow
network using two different approaches: event-driven
and time-driven. Our experiments with the sequen-
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Figure 7: The graph in this figure illustrates the im-
pact of workload on the average running time of the
simulation.

tial implementation of the two approaches correlates
with previous research (Nance 1971).

We have shown that, for the traffic network simu-
lation, implementations of both the event-driven ap-
proach and the time-driven approach can achieve ap-
preciable speedup. This speedup can be achieved in
a distributed parallel environment using a parallel ar-
chitecture such as PVM, which extracts high cost for
communication.

We have also shown that speedup is a misleading
metric when used to compare two models. For exam-
ple, for dense traffic flow in the network, the imple-
mentation of the time-driven approach achieved less
speedup than the implementation of the event-driven
approach, yet the parallel time-driven implementa-
tion executed faster (17.6 minutes) than the parallel
event-driven implementation (46.9 minutes).
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