Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

ParaSol: A MULTITHREADED SYSTEM FOR PARALLEL SIMULATION BASED ON
MOBILE THREADS

Edward Mascarenhas
Felipe Knop
Vernon Rego

Department of (‘omputer Sciences
Purdue University

West Lafayette,

ABSTRACT

ParaSol 1s a novel multithreaded system for shared-
and distributed-memory parallel simulation, designed
to support a variety of domain-specific Simulation
Object Libraries. We report on the design of the
ParaSol kernel, which drives executions based on op-
timistic and adaptive synchronization protocols. The
active-transaction flow methodology we advocate is
enabled by an underlying, efficient lightweight process
system. Though this process- and object- interaction
view 1s known to both simplify and speed transition
from model design to simulation implementation, mi-
gratable threads and objects pose many serious chal-
lenges to efficient kernel operation. Good solutions
to these challenging problems are key to good sim-
ulator performance. We present techniques for the
support of optimistic parallel simulations, addressing
synchronization, state-saving, rollback, inter-process
communication, and process scheduling.

1 INTRODUCTION

Simulations that progress in time via a discrete se-
quence of events — discrete event simulations — are
challenging targets of parallelization. The challenge
lies in moving a parallel simulation forward to com-
pletion as fast as possible in real time, while sat-
1sfying simulation-time related synchronization con-
straints. We have embarked on the construction of
a four-tiered software architecture, called the AC'ES
system (Knop ¢t al. 1995), for parallel computation
and simulation applications. In this paper, we focus
our attention on the ParaSol layer, which supports
general parallel simulation and computation through
the process- and objcct- interaction view.

We resort to standard parallel simulation terminol-
ogy (Fujimoto 1990) to present background and de-
sign 1deas. If a physical system to be simulated can be
viewed as a system of interacting physical processes, a
simulator for such a system consists of interacting log-
tcal processes (LPs), each progressing from one event
to the next in simulation time, where such time is
tracked by a local clock and called the local virtual
time (LVT). To simplify discussion, we will assume a
one-to-one correspondence between physical and logi-
cal processes. Dynamic entities in the physical system

690

IN 47907, U.S.A.

may move from one physical process to another, and
are represented by active-transactions (threads) that
flow between LPs in the logical system. By binding
simulation time-stamps (denoting when transaction-
related events occur) to transactions, this information
flow enables communication — and thus synchroniza-
tion — between LPs.

By allowing cooperating processors to synchronize,
a parallel simulator eliminates invalid simulation tra-
jectories generated by causality errors. A causality
error is said to occur at an LP if this LP finds it-
self in violation of the fundamental simulation rule:
events must be processed in order of non-decreasing
time. The major focus of parallel simulation research
centers around implementation and performance as-
sessment of two well-known synchronization proto-
cols: the conservative protocol and the optimistic
protocol. In the conservative approach (Chandy and
Misra 1979), events are executed strictly in order of
occurrence in simulation time. In the optimistic ap-
proach (Jefferson 1985), an LP processes events as
event messages become available, hoping the physical
order of event message arrival corresponds to order
of nondecreasing time. A causality error occurs if an
event arrives at an LP with a time-stamp value that
1s less than the LVT of the LP - thus motivating use
of the term straggler to describe the event message -
rendering the processing of the LP potentially invalid.
When this occurs, the computation is rolled back and
restarted from a previously saved and error-free state.
State-saving and rollback mechanisms enable implicit
LP synchronization.

Software interfaces to sequential simulation ap-
plications tend to support one or more of three
well-known world views: event-scheduling, activily-
scanning and process-interaction. ParaSol is de-
signed to support active-transaction flow in process-
interactive simulations. This approach to modeling
1s used by many popular sequential simulation lan-
guages (e.g., CSIM, GPSS, SIMAN). The idea here
1s to develop a process- style description of a transac-
tion’s activity as it flows through a system: In the al-
ternate, active-resource view, transactions are passwe
entities that are processed by active resources, i.e.,
process-style descriptions implement resource func-
tions: In Figure 1 is shown two code segments high-
lighting the difference between these approaches.

ParaSol

wait for cust msg

hold(cust.time - now);

choose next facility (B) | Router
message send cust to B

wait for cust msg

walt for cust msg
t = cust.time; H : t = cust.time;

last = MAX(t,last) + { last = MAX(t,last) +
| srv tm; Y srv tm;
it e last; Voot t = last;
f send cust to router i send cust to router
(time = t} oo (time = t)

| D}Q

Fauluy A

s mo

Fucility B

Transacivn 7 .
reserve(A): S
hold (srv tm),
release (A):

reserve(A);
hold (srv tm);
release (A);

' reserve(B):
{ hold (srv tm).
! release (B):

reserve(B);
hold (srv tm);
B release (B);

- mo

Facilty B

b) Active transaction

Figure 1: Program code using (a) the active-resource
view, and (b) the active-transaction view. In the first
case customers are represented by messages, and re-
sources by processes. In the second, customers are
represented by processes, and resources by objects.

1.1 Simulation Software and ParaSo!

The ParaSol system was motivated by concerns of
ease-of-use - for enabling experimentation, generality
~ for domain-specific parallel computations, exploita-
tion of threads — for efficiency, and rapid transition-
ing, and portability — for maximum usability. Code
development in C++ offers the benefits of flexibil-
ity and extensibility. Internal components are mod-
ified and/or replaced with little difficulty to support
application-specifics — a result of inheritance features
of C++. For example, ParaSol binds to an arbitrary
parallel programming library like PVM (Sunderam
1992), Conch (Topol 1992) for remote process spawn-
ing and message-passing.

To the best of our knowledge, ParaSol is the first
run-time threads based parallel simulation system.
Here, transactions are implemented via time-stamped
threads which transparently migrate between proces-
sors to access model resources (resident on distinct
processor memories). Based on experimental work
reported by Sang et al. (1993), the use of mobile
threads has several advantages: locality of reference,
potential for load balancing, one-time transmission,
simplicity in application-level coding, etc. On the
other hand, the complexity of working with threads
instead of simple messages is significant: issues com-
plicated by threads include LP scheduling, state sav-
ing and rollback, interfacing simulator kernel and
threads systems etc. Finally, a key advantage of our

691

Application Layer

DISplay
User Interface

Domain 1| Domain 2| ® ® e

Kernel Layer

Communications

Threads System System

Figure 2: Layering in ParaSol

approach is ease of programming — an easily over-
looked but beneficial feature, motivated by the ap-
parently low use of parallel simulation software in
the simulation community. This advantage is simply
a result of three design decisions: support for active-
transaction flow, optimistic synchronization as an ex-
treme form of adaptlve synchronization, and cheap,
mobile threads.

A few parallel simulation systems have been
developed in the past decade, some as experi-
mental, research-oriented systems, and others as
commercial-grade systems (Jefferson and Bellenot
1987, Baezner et al. 1990 ,Bagrodia 1991, Steinman
1992, BoyanTech Inc. 1994).

2 ARCHITECTURE

The ParaSol system consists of three layers, shown
as the top three layers in Figure 2. Support lay-
ers beneath these three include a threads layer and
a communications layer. An additional, but indepen-
dent, DISplay library supports visualization functions
at all layers. The ParaSol kernel is essentially the
parallel simulation engine, responsible for driving all
the other modules (these are described briefly in Sec-
tion 3). Kernel modules access threads-layer primi-
tives and communications layer primitives, protecting
application-level codes from system details.

The ParaSol kernel is currently layered upon the
Ariadne (Mascarenhas and Rego 1995a) threads sys-
tem. Like other threads systems, Ariadne supports
dynamic creation and destruction of threads, priority-
based scheduling and context switching. But Ari-
adnc is novel in that it also supports thread migra-
tion between processors, user-customized schedulers,
thread-check-pointing, and thread-image restore op-
erations. The Ariadne Parallel Programming Sys-
tem (Mascarenhas and Rego 1995b) is hased on the
notion of migratable threads. With support from
Ariadne, ParaSol adopts transaction-migration as a
primary remote-object access mechanism, exploiting
transparent migration of threads through supporting
object location/relocation mechanisms.

Since ParaSol was motivated by domain-specific
methodologies, the domain layer consists of distinct
domain libraries. For example, the queueing do-
main contains functionality (operations on servers
and queues) that is different from functionality pro-
vided by a particle-physics domain (grid definition,

692 Mascarenhas, Knop, and Rego

Figure 3: Closed Queueing Network with N Switches
and @ Servers per Switch

cluster generation, particle tracing). Thus, each do-
main library provides an interface to resources that
are specific to a particular domain. Domains that
provide more functionality correspondingly relieve
the user of programming detail at the application
level. A user may select domain-specific functions
that suit the application, thus eliminating nontriv-
ial code redesign. Typical domains include switch-
ing systems, particle physics, manufacturing systems,
digital logic circuits, and combat simulations.

2.1 The Application Layer

User-level code is developed using functions provided
in the domain and kernel layers (see Table 2). An exe-
cuting ParaSol application will consist of a main pro-
gram (a Unix process) which simultaneously executes
on multiple user-specified processors/machines. Each
such (Unix) process is called a ParaSol process and
hosts one or more logical process (LP) threads, one
or more global objects associated with the LP thread
(the number and type of such objects depends on
the application), and threads that represent active-
transactions. Global objects are objects whose pres-
ence and location are known to all LPs. Function
main binds LPs to ParaSol processes at run-time, first
creating the requisite number of LP threads, and then
scheduling them for execution. When an LP thread
receives control, it creates global objects (these are
specified by the modeler) and registers them with a
controller process (a ParaSol process with added re-
sponsibilities), so that these objects may be accessed
by other LPs.

2.2 Example: A Closed Queueing Network

We provide a simple ParaSol model of a closed queue-
ing network (CQN) using the queueing domain li-
brary. Code developed in Maisie (Bagrodia 1991) for
the same example, was based on the active-resource
approach. In contrast, the ParaSol code developed
here is based on the active-transaction approach.
Consider a system of N fully connected switches, each
hosting @ single-server (fifo) queues in tandem. Cus-
tomers arriving at a switch are served by each of these
@) servers in sequence, and then routed, uniformly
randomly, for another round of service to one of the
N switches. Initially, each switch is assigned J jobs.

12
13
14
15
16

17

18
19

20
21

22
23
24
25
26

27
28

29

30
31
32

33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49

/* number of switches */
/* servers per switch */
/* number of jobs */

const int § = §;

const int NSERV = 10;
const int NJOBS = 10;
const int NTRIPS = 10; /* number of trips */
PSOL s; /* simulation manager */
FACILITY 1Server [NSERV]; /* models local servers %/
FACILITY rServer([N]; /* models remote servers */

main() {
s = new PSol();
s->simulate();

H

LPtoHOSTMapper(void) { /* binds LPs to processes */
int i, numProcs;
numProcs = s->getﬂumProcs();
for (i = 0; i < H; i++) // ¥ queues
s->bindLP(TQUEUE, i%numProcs, MEDIUM, 3, 0,
0, i, NSERV, NJOBS);
} /* end LPtoHOSTMapper */

LP TQUEUE(int qid, int Q, int J){ /* tandem queue */
int j, n, q;

for (q=0; q < Q; gq++) /* create local servers */
1Server[q] = new Facility(qid*Q+q, FIF0);

for (n=0; n < §; n++)/* create remote servers */
if (qid '= n)
rServer[n] = newRemoteDbject(n*Q, Facility);
else
rServer[n] = 1Server[0];

for (j=0; j < J; j++) /* create jobs */
s—>create(jobThread, MEDIUM, 4, 0, 0, j, i
qid, Q, NTRIPS);
s->waitTermination(); /* wait for a signal */
for (q=0; q < Q; q++) /* print statistics */
1Servers[q]->print_report();
} /* end TQUEUE */

ATHREAD jobThread(int jid, int qid, int Q, int T) {
int trips = 0; /* models a job */
int q;
float rno;
int n = qid;

while (trips < T) {
for (@ = 0; q < Q; g++) {
if (q == 0)/*reserve and use server */
rServer[n]->reserve();
else
1Server[q]->reserve();
1Server[q]->hold (expon(MSRVTIME));
1server[ql->release(); /* release */
}
n = urand(0, B-1)*Q; /* destination switch */
}
} /* end jobThread */

Figure 4: Implementing a Closed Queueing Network
in ParaSol

ParaSol

693

Table 1: ParaSol Kernel Primitives

int trCreate(void (*funcname)(...),
int stacksize, args{;

int trMyid();

int trHold(double time);

int trSuspend(void);

int trResume(int tid, double delta-t);

int trCancel(int tid);

int trMigrate(int LPid);

void trExit(void);

int trSetAttrib(int index, void* buf, int size);

int trGetAttrib(int index, void* buf, int size);

void bindLP(void (*func)(...), int procld,
int stksz, args);
int IpMyid();

void *newRemoteObject(int id, ObjectClass);

int objRegister(GlobalObject *objPtr);
int objDeregister(GlobalObject *objPtr);

void simulate(void);

int getNumProcs(void);

void printf(char *fmt, ...);
void waitTermination(void);
void signalTermination(void);

Transaction Primitives

Logical Processes

Objects

Miscellaneous

Create a transaction to execute funcname with

a stack of size stacksize and arguments args
Return the identifier of the transaction

Suspend execution of the transaction for time
Suspend execution of transaction indefinitely
Resume a suspended transaction at Ivt+ delta_t
Cancel a scheduled execution of a transaction tid
Migrate a transaction to LLP LPid

Finish this transaction

Set transaction attribute at index to buf

Get transaction attribute from index into buf

Bind an LP to a process procId and create an
LP thread to execute func in process procld
Get the identifier of the LP

Create a dummy object of type ObjectClass
and identifier id. Locate the object

Register object for state saving

Deregister the object from state saving

Initialize and start the simulation

Returns the number of Unix processes in the system
Output a message at the current time

Wait until termination

Signal a termination

Simulation ends when each job completes some user
defined number of trips around the network. Ser-
vice times are assumed to be i.i.d exponential random
variables at all servers. Figure 3 depicts a CQN with
N switches, and @ tandem queues at each switch.
A complete ParaSol program for this application is
shown in Figure 4.

The main function initializes the ParaSol system
and begins simulation via a call to the simulate()
method (lines 9 and 10). This ParaSol method makes
a call to a user written LPtoHostMapper () function
whose task is to create all LPs and bind them to
(Unix) processes (line 16). The bindLP() kernel
primitive creates an LP thread at the process spec-
ified in its procId argument. In the example, each
LP TQUEUE creates () servers (modeled by the type
Facility from the queueing domain) (lines 20 and
21). Each LP also needs to know the location of the
first server at each of the N switches, since transac-
tions must migrate to LPs hosting these servers. This
is obtained by a call to function newRemoteObject ()
on line 24. Note that each LP and each global ob-
ject possesses a unique system-wide identifier through
which it is accessed. In the example, LPs are num-
bered from 0 to N — 1, and server objects are num-
bered from 0 to NQ —1. After each LP thread creates
NJOBS transactions (line 28), thus assigning the req-
uisite number of jobs to each switch, 1t relinquishes
control by invoking function waitTermination().

Transactions representing jobs are active, and may
migrate between LPs. Each jobThread() makes
NTRIPS trips to the switches. Each server is reserved

for service by a job via a queueing-domain function
reserve(). If the server is busy, the job is queued.
When service begins, upon a job’s return from func-
tion reserve(), the server 1s made to remain occu-
pied for some amount of (simulated) time via the
function hold(). The server is finally released via
function release(), so that other jobs may use the
server (lines 39 — 46). After obtaining service from @
consecutive servers, a customer must decide whether
to continue receiving service at another switch, or
simply terminate execution. If it decides to continue,
it generates a uniformly distributed random integer
in [0, N — 1] to locate a destination switch (line 47).
Observe that the corresponding Maisie model effects
this through a special router entity. In ParaSol this
routing is implicit in the call to reserve (line 41),
since this function knows where (i.e., on which pro-
cessor) the server to be reserved is located.

3 KERNEL MODULES

In this section we address the functionality of key
modules in the ParaSol kernel, providing insights into
algorithms and data structures used to implement
various tasks. This prepares the ground for issues dis-
cussed in the following section. Each ParaSol module
i1s developed as one or more classes in C++. Fig-
ure b summarizes critical components of the kernel in
pictorial form.

The kernel is interfaced to five major layers: the
domain and application layers (above), the threads
and communications layers (below), and the DISplay

694 Mascarenhas, Knop, and Rego

PARASOL KERNEL PARASOL LP

N Trunsiction Management
USER INTERFACE) Calendur

Global Objects Management
b T Linked List of Thrcads

Debugging, Statistics, and Eror Reporting Suppost

GLOBAL MECHANJSMS . . Rallhack Protacol Thread
LP Mapper § Object Initialization © GVT © Load |/ Module Mudule Conlext
: : : : Module

& Locatoe | Locator * Termunation f(‘nmpumunf Balance,’
B State Module
Linked list of saved Threads and Objects I

THREADS & OBJECTS

b""rw‘(s)p Q
5
Q.

Transaction threads

THREADS AND COMMUNICATION INTERFACE
MODULE

Figure 5: The ParaSol Kernel

layer. Functionality in the ParaSol kernel is deliber-
ately kept to a minimum - to implement core simu-
lation primitives. As a result, kernel design, imple-
mentation, and maintenance remain relatively simple.
The effect is to drive all complex application-related
functionality into higher system layers, and in partic-
ular into the domain layer.

The kernel modules that interface with the threads
and communications systems consist of a base class,
that defines the interface, and several derived classes.
Depending on which derived class is used, appropri-
ate threads systems and communications systems are
bound to the kernel — this provides portability be-
tween software environments.

The communications interface module in the kernel
has two important functions. First, it allows ParaSol
to be used with any arbitrary parallel programming
system selected by the user. Second, it allows the
ParaSol system to execute in sequential or in par-
allel mode. In the sequential mode, message pass-
ing and other actions related to parallel simulation
are disabled. A crucial optimization is made possible
for simulation on clusters of shared-memory multi-
processors: the communication module exploits na-
tive inter process communication (IPC) mechanisms
(e.g., Unix message queues) for message passing.

The remaining kernel modules may be considered
to be either Global mechanisms or Logical Process
mechanisms. LP mechanisms are local to an LP and
control the simulation of transactions associated with

the LP.

3.1 Global Mechanisms

The major global mechanisms are shown in Figure 5.
Here we discuss mechanisms that impact the behavior
of transactions in ParaSol. The LP Mapper and Loca-
tor maps LPs to processes and maintains the location
of all LPs in the system. The global object locator
mechanism is similar to the LP locator and provides
the location of any object, given its unique identi-
fier. The location of an object is the identifier of the
LP at which the global object is created. The global
virtual ttme (GVT) module in ParaSol computes the
GVT periodically. The algorithm is similar to the

GVT algorithm used in TWOS (Jefferson 1985). To
account for transactions in transit we piggyback ac-
knowledgements onto messages. Two distinct mod-
ules are responsible for system initialization and ter-
mination. Initialization occurs when the simulation
“driver” and associated modules are created. At this
time the threads system is also initialized, and mul-
tiple processes are initiated by the communications

system.

3.2 Local LP Mechanisms

A ParaSol kernel may manage an unlimited number
of LPs (see Figure 5) simultaneously. In doing so, the
kernel provides a critical form of efficiency: distinct
LP threads resident within a single process may freely
pass data to one another (shared memory). Further,
by placing several LPs within a single process, roll-
back may be significantly reduced (since LPs within
a process are scheduled strictly by minimum time-
stamp of transaction). For each LP resident in a
given host, an internal LP object is created. This ob-
Ject contains LP related data (LVT, transaction with
minimum time-stamp, etc.) and pointers to various
modules.

The most important structure contained in an LP 1s
the Calendar: this structure stores transactions that
have executed in the past, and transactions sched-
uled for future execution. The calendar also records
side effects caused by execution of transactions, al-
lowing these effects to be undone, when and if neces-
sary. In ParaSol a calendar entry consists of a time-
stamp and a pointer to a suspended thread context.
Thus a transaction is merely a thread context cou-
pled with a time-stamp. The Thread Context Module
stores time-stamped contexts of active and inactive
threads in the system. Maintaining inactive contexts
1s necessary because of the potential for rollbacks -
Inactive contexts may need to become active and re-
compute. The primary data structure used is a hash
queue indexed by a thread identifier and thread ac-
tivation time. The hash queue allows rapid access to
the context of any transaction in the LP given only
the thread identifier.

The State Module in ParaSol is responsible for
saving LP-state at some user-specified frequency, de-
pending on run-time characteristics. System state in
ParaSolis defined by the state of all threads (LP and
active-transaction threads) and objects (associated
with either LPs or active transactions). Thus, sav-
ing system-state in ParaSol requires saving both data
(objects) and computations (threads). This is in con-
trast to existing parallel simulation systems, where
only data is saved. Objects that are local to threads
(local variables and data structures) are automati-
cally saved - as local thread state — when a thread is
saved. But objects that are global need explicit save
actions. State saving in ParaSol is transparent at
the (user) application-level. However, global objects
defined not at the domain layer but at the applica-
tion layer must be registered for state-saving through
functions provided in the kernel.

State-saving overheads are known to have serious

ParaSol

impact on the performance of optimistic protocols.
Minimizing such overheads, whenever possible, is crit-
ical. ParaSol’s state-saving algorithm for threads op-
erates incrementally and infrequently. The latter is a
result of intermittent check-pointing, where frequency
1s determined by a user-specified event count. State-
saving is incremental because instead of saving all
threads within an LP at a checkpoint, only threads
that have run within the last interval are saved.

The Rollback Module contains algorithms for ef-
fecting rollback: an LP’s state is rolled back from its
LVT i, to its state at some past time t,. The coast-
forwarding phase (Fujimoto 1990) is necessary when
state 1s saved infrequently, as is done in ParaSol. Dur-
ing the coast-forward, user commands are executed
but kernel primitives execute code selectively. For
example, transactions do not (re)migrate during the
coast-forward.

4 THREADS AND TRANSACTIONS

Use of threads-based active-transactions in opti-
mistic parallel simulations provides definite advan-
tages, while presenting nontrivial design problems
that must be resolved. In the rest of this discus-
sion, we focus on the implications of thread usage for
transaction implementation in ParaSol.

4.1 Basic Thread Primitives

Threads systems support lightweight processes: low-
overhead processes ideal for process-based simula-
tions. Creation costs and context-switching costs
of such processes are significantly lower than corre-
sponding costs for heavyweight processes. All threads
systems support creation, context-switching, suspen-
sion, resumption, and destruction of processes These
primitives are sufficient for the implementation of
process-interactive simulators in sequential and par-
allel environments. One way of using threads in
process-based simulations is to make the threads sys-
tem an integral part of the simulator. This method
i1s used in CSIM (Schwetman 1986), a sequential
process-based simulation system written in C. A seri-
ous disadvantage of this approach is that the threads
system cannot be replaced if required - for instance,
when an improved threads system becomes available.
Certain ParaSol requirements may not be easily met
by other threads systems: support for a large number
of co-existing threads, and thread migration. Because
Ariadne supports threads in user-space, threads may
co-exist in large numbers. One of Ariadne’s main de-
sign goals was the efficient support of process-based
parallel simulators (Mascarenhas and Rego 1995a).

4.2 Scheduler

Every simulator must utilize a scheduler to schedule
events: the earliest event in the system 1s scheduled
for immediate execution. In process-based simula-
tions, the scheduler selects the transaction (thread)
with the lowest time-stamp and gives it control - since
a thread handles processing of its own events. Most

695

Calendars for multiple LPs in a ParaSol Process

\ Threads System

Context Switcher

Figure 6: ParaSol as a Thread Scheduler for Ariadne

threads systems (including Ariadne) offer built-in, OS
style priority-based schedulers that are not appropri-
ate for simulations. Ariadne permits scheduler cus-
tomization at the user level; the user creates scheduler
functions that are installed at run-time. When a cus-
tom scheduler is installed, the calls to Ariadne’s built-
in scheduler are mapped onto calls to user-installed
functions. These functions must implement the re-
quired scheduling policy. As shown in Figure 6, a
threads system may view a simulator as merely a cus-
tomuzed scheduler. Ariadne’s context-switch mecha-
nism invokes the ParaSol driver to obtain the next
thread to run.

Ariadne’s methodology allows thread contexts to
be stored in user space. An appropriate data struc-
ture can be used to store thread contexts. ParaSol
makes use of a linked list based calendar, and a hash
queue table, to store and retrieve contexts. The Para-
Sol driver retrieves the thread context of the next
transaction to execute from the linked list calendar,
and returns it to the threads system.

4.3 Transaction Migration

In parallel simulations based on the active-resource
approach, messages are used to send passive en-
tities (such as jobs, customers) between resources.
Messages may also be used for communication in
transaction-flow based systems (e.g., Maisie). In con-
trast, our approach is based on active transaction
flow: we believe that migrate processes is a very natu-
ral representation of active transaction flow. ParaSol
implements this transaction flow via thread migration
—a direct mapping that brings a model as close to the
physical system as possible. Transaction flow is nec-
essary for transactions to access resources in various
parts of the system.

696 Mascarenhas, Knop, and Rego

extern PSol* _pSol; /% the simulation controller */
class Facility: public GlobalObject {

void *data; /% pointer to the actual object */
public:

Facility();

void reserve(void);

b
void Facility::reserve(void)
{
int 1lpld;
int facld;
if ((1pId = getLP_Id()) !'=
_pSol->getCurrentLP_Ptr()->getLPid()) {
facld = getObjId(); /* save id of objt */
_pSol->trMigrate(lpld);/+ migrate remote */
/* this code runs on remote processor */
(PSmapObjMgr->existingObject (facld)))->reserve();
else {
/* normal processing - the facility is local */
}
}

Figure 7: Example of Migration: reserve() Primi-
tive of Queueing Domain

Migration entails moving a transaction from one
processor to another. Ariadne provides the low-level
thread migration support required by ParaSol A
thread, consisting of a thread context area (tca) and
stack, is “packed” into a buffer and sent to the des-
tination via communications layer primitives. At
the destination, the message is “unpacked” into a
thread-shell and is ready for execution. The cost of
migrating a thread in this manner is equal to the
cost of sending and receiving a message of the same
length (Mascarenhas and Rego 1995a). This point is
of great significance, because ParaSol does not cur-
tail the number of migrations. The transaction-flow
approach may result in a large number of threads,
each of which can migrate. Since migrant threads
are responsible for rollback, efficient migration is im-
portant. Details on migration in Ariadne can be
found in (Mascarenhas and Rego 1995a). Transmit-
ting threads instead of messages adds marginal over-
head in the form of stack information. But since the
dominant component of transmission time is due to
transmission latency and not message size or even
data packing/unpacking, thread-migration costs are
equivalent to message transmission costs (Sang et al.
1993). Finally, migration does not always involve
message transmission because both the source and
destination LPs may reside within the same process
or in the same shared memory multiprocessor.

As an example of the use of migration, consider
the implementation of the reserve() primitive from
the queuing domain. This primitive allows a trans-
action to reserve a server in a Facility (see the
closed queueing network example in Figure 4). If the
reserve() primitive is executed when the server is
busy, execution of the transaction is suspended until
the server becomes available. When the reserve()

primitive returns, the server is ready to serve the re-
serving transaction. In Figure 7 is shown a C++
code-segment implementing this primitive. First, a
check is made to determine whether the Facility
to be reserved is hosted by the current LP. If so,
transaction execution proceeds locally. If not, the
object identifier is saved in local variable facId, and
the kernel’s migrate primitive is invoked. As indi-
cated earlier, the Facility object contains the iden-
tifier of its host LP. The trMigrate() primitive calls
Ariadne’s migrate primitive. When trMigrate() re-
turns, the transaction is at the destination LP; here
it accesses the Facility locally. At the destination
LP, the pointer to the object is updated by a call to
existingObject () (using the saved value of facld),
provided within the Object Locator module. This 1s
followed by a recursive call to reserve() using the
updated pointer; the call is guaranteed to proceed,
since the object is now local to the LP.

A thread migration capability is not essential for
implementing process-based simulations. But with
this capability, parallel simulation users are pro-
tected from having to use explicit send and receive
data messages in application code. As shown in the
closed queueing network example, migration makes
the source code for the parallel simulation almost
identical to sequential simulation, since all accesses
to remote data become local after migration. More-
over, migration is a direct form of active-transaction
flow, resulting in a powerful threads-based modeling
abstraction.

4.4 Transaction State

Optimistic parallel simulations save system state to
support rollback. State saved in ParaSol includes
object-state as well as thread-state. The threads
system must support save and restore facilities for
thread contexts: the context_save() kernel primi-
tive causes a thread’s tca and essential stack to be
saved in a buffer (a thread image), with a buffer ad-
dress returned. To save the state of all the threads
in an LP, this primitive must be called for each ac-
tive thread run since the last check point. A thread
is restored by placing its saved image (tca, stack)
into its current context, achieved via a call to the
context_restore() kernel primitive. The cost of
state-saving and restoration is directly proportional
to the size of a thread’s stack. This size is a func-
tion of the number and size of local variables declared
within a thread and its degree of nesting at a point
of suspension.

4.5 LP Migration

LP migration, a special case of thread migration, is
an important facility for load balancing. When an
LP migrates, all objects and threads associated with
the LP migrate along with it. This also includes the
calendar, thread context module, state module, and
other data structures used by the LP. Because of the
availability of a basic thread migration facility, the si-
multaneous migration of a batch of threads does not

ParaSol

pose a problem. Migrating all objects in an LP is
made possible with the aid of functions to save the
state of each object at the sender and to recreate the
object at the receiver. Migrating objects in a het-
erogeneous environment entails the use of network-
independent formats. With additional help from the
LP locator and Object locator modules, the locations
of LPs and Objects — which may change as a simula-
tion proceeds — ParaSol makes dynamic load balanc-
ing feasible.

5 CONCLUSION

The ParaSol system is an experimental test-bed for
studies in domain-specific parallel stochastic simula-
tion. At the present time, the major kernel mod-
ules have been tested and initial experimentation is
In progress. Domain layers are presently under con-
struction. Based on simple experiments we have al-
ready conducted, we conclude that the proposed ap-
proach is feasible. More importantly, the system is
easy to use and experiment with. Modelers that
are adept at sequential transaction-flow based simu-
lation should find the ParaSol approach simple. Fur-
ther, porting existing sequential applications to Para-
Sol will be possible with low effort. Domain layers
under construction at this time include a queueing
domain, a particle-physics domain, and an adaptive
quadrature domain. The kernel currently supports
optimistic synchronization; this is currently being ex-
tended to support adaptive synchronization. Support
for load-balancing, fault-tolerance, and replication is
also in progress. We plan to report on system perfor-
mance when domain layers are ready.

ACKNOWLEDGEMENTS

This research was supported in part by ONR-
9310233, NATO-CRG900108, and ARO-93G0045.
The second author was supported by CNPg-Brazil
process number 260059/91.9.

REFERENCES

Baezner D., G. Lomow, and B. Unger. 1990. Sim++:
The Transition to Distributed Simulation. Dis-
tributed Simulation, SCS Simulation Series, 211-
218.

Bagrodia R. L. 1991. TIterative Design of Efficient
Simulations Using Maisie. In Proceedings of the
1991 Winter Simulation Conference, 243-247.

BoyanTech, Inc. 1995. CPSim 1.0 User’s Guide and
Reference Manual. BoyanTech, Inc., McLean, VA
22102.

Chandy K. M. and J. Misra. 1979. Distributed Sim-
ulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Trans. on Softw.
Eng., 5(5):440-452.

Fujimoto R. 1990. Parallel Discrete Event Simula-
tion. CACM, 33(10):30-53.

Jefferson D. and S. Bellenot. 1987. Distributed
Simulation and the Time Warp Operating System.
ACM Operating System Review, 77-93.

697

Jefterson D. R. 1985. Virtual Time. ACM Trans-
actions on Programming Languages and Systems,
7(3):404-425.

Knop F., E. Mascarenhas, V. Rego, and V. Sun-
deram. 1995. Fail-Safe Concurrent Simulation
with EcliPSe: An Introduction. Simulation Prac-
tice & Theory (to appear).

Mascarenhas E. and V. Rego. 1995a. Ariadne: Archi-
tecture of a Portable Threads System Supporting
Thread Migration. Software-Practice and Ezperi-
ence (lo appear).

Mascarenhas E. and V. Rego. 1995b. Migrant
Threads on Processor Farms: Parallel Program-
ming with Ariadne. Technical report in prepara-
tion, Computer Sciences Department, Purdue Uni-
versity. .

Sang J., E. Mascarenhas, and V. Rego. 1993. Process
Mobility in Distributed-Memory Simulation Sys-
tems. In Proceedings of the 1993 Winter Simula-
tion Conference, 722-730.

Schwetman H. 1986. A C-based Process Oriented
Simulation Language. In Proceedings of the 1986
Wanter Simulation Conference, 387-396.

Steinman J. S. 1992. SPEEDES: A Unified Approach
to Parallel Simulation. In Proceedings of 6th Work-
shop on Parallel and Distributed Simulation, Sim-
ulation Series, 75-84.

Sunderam V. S. 1990. PVM: a Framework for Paral-
lel Distributed Computing. Concurrency: Practice
and Ezperience, 2(4):315-339.

Topol B. 1992. Conch: Second Generation Heteroge-
neous Computing. Technical report, Department
of Mathematics and Computer Science, Emory
University.

AUTHOR BIOGRAPHIES

EDWARD MASCARENHAS is a Ph.D. student
in Computer Sciences at Purdue University. He re-
ceived a Masters degree in Industrial Engineering
from NITIE (Bombay, India), and a Masters degree
in Computer Sciences from Purdue University (West
Lafayette) in 1993. His research interests include par-
allel computation, distributed simulation, and multi-
threaded programming environments.

FELIPE KNOP is a Ph.D. student in Computer
Sciences at Purdue University. He received a Mas-
ters degree in Computer Sciences from Purdue Uni-
versity in 1993 and a Masters degree in Electrical
Engineering from University of Sao Paulo, Brazil, in
1990. His current research interests include parallel
and distributed simulation, and multiprocessor oper-
ating systems.

VERNON REGO is a Professor of Computer
Sciences at Purdue University. He received his
M.Sc.(Hons) in Mathematics from B.I.T.S (Pilani, In-
dia), and an M.S. and Ph.D. in Computer Science
from Michigan State University (East Lansing) in
1985. He was awarded the 1992 IEEE/Gordon Bell
Prize in parallel processing research, and is an Editor
of IEFFE Transactions on Computers. His research in-
terests include parallel simulation, parallel processing
and software engineering.

