SimKit

dependent of the underlying synchronization mecha-
nism while at the same time allowing maximum par-
allelism to be extracted from the model.

SimKit is a C++ class library that is designed
for very fast discrete event simulation. SimKit
presents a simple logical process view of simulation
enabling both sequential and parallel execution with-
out. code changes to the application models. A brief
overview of logical process modeling methodology in-
nate within PDES is presented in section 2. Section
3 lists the issues that dictate parallel simulation lan-
guage design considerations. The design philosophy
adopted in the SimKit System is then outlined fol-
lowed by the features of the SimKit System. Sub-
sequent sections describe the SimKit simulation pro-
gramming model, the SimKit language primitives and
future developments envisioned.

2 LOGICAL PROCESS
METHODOLOGY

MODELING

In PDES, the physical system to be modeled is con-
ceptualized as a system of interacting physical pro-
cesses (PPs). A distributed simulation model of
the physical system is represented by a topologically
equivalent system of computational units called log:-
cal processes (LPs). Each LP is responsible for sim-
ulating events in a sub-space modeling the activi-
ties occurring in the corresponding PP. The inter-
action between PPs is modeled by the corresponding
LPs communicating via timestamped messages. The
timestamp represents the event occurrence time in
the simulation. State transitions in the physical sys-
tem are modeled by the occurrence of an event, i.e.,
the receipt of a timestamp message at the destination
LP. Occurrence of an event may involve modifications
to the state and/or the causing of new events in the
future.

Distributed Simulation accelerates the execution of
the simulation program by executing the computa-
tional units (LPs) concurrently on multiple proces-
sors. By nature, in a distributed simulation system,
there is no notion of a global clock or a central event
list. LPs execute in parallel by maintaining their own
local clock and event list. A synchronization algo-
rithm 1s used to ensure that the causality is main-
tained at each LP. Sharing of state between LPs 1s
not possible. A separate synchronization mechanism
should be provided to support consistent shared vari-
ables in PDES. Ghosh and Fujimoto (1991) uses the
Space-Time memory system to support shared mem-
ory. Mehl and Hammes (1993) describe several mech-
anisms to support shared variables in distributed sim-
ulation.
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3 SIMKIT DESIGN PHILOSOPHY

A plethora of parallel simulation languages have ap-
pearcd in the last decade, each with differing de-
sign considerations. The languages include APOS-
TLE (Wonnacott and Bruce 1995) from DRA, U.K.,
Common Interface of OLPS (Abrams 1988, 1989),
Maisie (Bagrodia and Liao 1990), ModSim (West
and Mullarney 1988 and Rich and Michelsen 1991),
MOOSE (Waldorf and Bagrodia 1994), SCE from
MITRE (Gill, Maginnis, Rainier and Reagan 1989),
Sim++ from Jade (Baezner, Lomow and Unger 1990,
1994), SIMA (Hassam 1991), RISE from RAND
(Marti 1988) and Yaddes (Preiss 1989). The ma-
Jor differences between these languages are their ap-
proach towards

o the programming paradigm employed

o the underlying synchronization protocol

the modeling world view
e run time configuration

e determinism, and

o efficiency

The desired characteristics of a parallel simula-
tion language as outlined by Abrams and Lomow
(1990) and Rajaei and Ayani (1992), include Simplic-
ity, Modularity, Portability, Transparency, Evolvabil-
ity, Efficiency, Scalability, Determinism, and Gener-
ality. The primary goal of the SimKit System
was to provide an event-oriented logical pro-
cess modeling interface that facilitates the ef-
fortless building of application models for se-
quential and parallel simulation with high per-
formance execution capabilities.

The design philosophy of the SimKit Programmer’s
interface can be summarized as:

o case of usc with the ability to reuse model com-
ponents

e indifference lowards the underlying simulation
control system

e creculion mode transparency

e cncompassing a wide range of applications and
user base

o cfficient event-oriented logical process view of
stmulation
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The design features of the SimKit System include:

Object Oriented Programming Model: The SimKit
library is implemented in the commonly-used
general-purpose object-oriented programming lan-
guage, C++. Object oriented techniques allow for
reusable simulation models and software components
to be developed. The iterative nature of a simula-
tion life cycle 1s well supported by the object-oriented
paradigm. Object-oriented techniques along with
good software engincering principles can be used to
design reliable simulation software, e.g., scoping via
objects can be used to create complex simulations in-
volving complex object class hierarchies.

By extending an existing language, the highly opti-
mized library routines for parallel programming pro-
vided for a given architecture, can be directly used in
the implementation of the underlying synchronization
scheme. Moreover, the availability of debuggers, soft-
ware engineering tools, etc. increase productivity and
portability. Application programmers are not bur-
dened with learning a new language and can concen-
trate on the system modeling task. The Simkit Class
library includes just three classes: sk_simulation
for simulation control, sk_1p for modeling applica-
tion sub-space behavior and state transitions, and
sk_event to model the interactions between the log-
ical processes.

Transparency: The design of the Parallel SimKit
system highlights the need for hiding issues per-
taining to the underlying synchronization algorithm,
wherever possible. Time Warp relies on a rollback
mechanism, hence great care was taken in providing
primitives for error handling, output handling and
dynamic memory management. However, the appli-
cation programmer is responsible to efficiently use the
various state saving mechanisms provided. State Sav-
ing 1s an artifact of the need to support the rollback
mechanism in Time Warp and for the present is left
under the jurisdiction of the application programmer
as a trade off for efficiency. This situation is incom-
patible with the other goals of the system and we
arc vigorously cxploring ways of providing transpar-
ent (and efficient) state saving. Space precludes a full
discussion of the automated state saving schemes ex-
plored. State Saving in the sequential Simkit system
1s completely ignored

State restoration during rollback is transparent to
the application program. SimKit libraries include a
comprehensive set of pseudo-random number distri-
butions with efficient state saving of the seeds. LP al-
location to processors in the parallel system is static
and may be optionaly specified by the programmer.

Evolvability: Parallel SimKit has been imple-
mented atop a Time Warp executive interface called

the Warpkit Interface. Great care was taken to imple-
ment a minimal clearly-defined interface to the Warp-
Kit Kernel. The interface comprises just three classes,
namely, wk_simulation, wk_1p and wk_event. The
SimKit classes in the parallel implementation) are de-
rived from and mirror WarpKit classes. The Time
Warp related quasi- operating system services like
event-delivery, rollback, and commit are provided as
virtual functions in the wk_1p class. This minimizes
the impact of modifications to the underlying syn-
chronization system on the Programmer’s Interface
and consequently the application itself. Evolving
schemes and feature extensions can be easily inte-
grated into the simulation control engine without af-
fecting the SimKit programmer’s interface.

FEfficiency: SimKit is a high performance simula-
tion language for event-oriented logical process view
of simulation. SimKit supports the efficient sequen-
tial and parallel execution without code changes to
the application model. The sequential simulation
control system 1s a highly optimized simulator that
uses the splay tree implementation of the future event
list. The parallel Time Warp system is capable of ex-
ploiting the inherent parallelism in applications with
very low event computation granularites, in the order
of a few microseconds on current RISC processors.

The parallel run time system consists of a varia-
tion of the Time Warp protocol optimized for execu-
tion on shared memory multiprocessors. The global
control algorithms are asynchronous in nature, with
minimal locking of shared structures. The design of
global control algorithms demonstrate a high degree
of scalability, i.e., minimal performance degradation
with an increase in the number of processors used.
The problem of state saving and restoration in Time
Warp is addressed by providing a grab bag of state
handler objects that are fine tuned for saving inte-
gers, floats, doubles, pointers, variable length state
and block states incrementally.

The event-oriented view of simulation enables effi-
cient scheduling of events via invocation of the cor-
responding LP’s event-processing member function
rather than the costly context-switching approach
required in a process-oriented approach. Also, the
memory requirements are lower as LP’s are active
only for the duration of an event. Event-oriented
views also allows for the dynamic creation and de-
struction of LPs.

Generality: SimKit provides a general purpose sim-
ulation interface. Both a sequential and a parallel
execution mode are supported. The sequential exec-
utive performs well on a variety of platforms and facil-
1tates debugging and testing. The per event schedul-
ing overheads for the sequential executive on an SGI
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Power Challenge, IRIX64 Release 6.0 IP21 mips mul-
tiprocessor architecture using the AT&T C++ com-
piler version 3.2.1 with the -02 compiler option, is
2.2 microseconds. The per event overheads for the
parallel executive 1s 8.6 microseconds.

4 SIMKIT PROGRAMMING MODEL

The SimKit Programmer’s Interface consists of three
classes, one type and several convenience functions
and macros. The three classes are: sk_simulation,
sk_1p, and sk_event. The one type is sk_time. Also
a library for random number generation and distribu-
tions is provided which includes classes for uniform,
normal, exponential, geometric, binomial, Erlang and
Poisson distributions.

Due to the scoping rules, base class names are vis-
ible to the application program and may introduce
errors if the programmer uses these set of identifiers.
Application programmers are warned not to use iden-
tifier names with a prefix sk_.

The simulation model is constructed by deriving
LPs from the sk_lp class and messages (or events)
from the sk_event class. The main function is in
the modelers domain and may be used to incorpo-
rate third party tools like a lex/yacc program code to
parse the simulation input parameters. The user in-
stantiates one instance of the sk_simulation class.
This object provides the initialization interface to the
run time simulation kernel. The type sk_time is used
to represent simulation time and supports standard
arithmetic operators associated with the type double.
The convenience functions and macros are provided
for easy access to simulation structures like current
LP, current event, and current time.

The modeler specifies an LP’s activity via the
sk_1p: :process pure virtual member function. The
kernel delivers an event to a LP by invoking this func-
tion with the event object as a parameter. Typically,
the process function is coded as a large case state-
ment with the event type specifying the branching
of control. Two other virtual members provided are
the sk_1p::initialize and the sk_1p::terminate.
These may be optionally defined to initialize the LP
and for doing wrap up LP work (e.g., printing LP
statistics and reports).

The derived message types may contain other ap-
plication specific data (besides event type) that are
communicated between the LP’s. A message is cre-
ated using the SimKit overloaded event’s new oper-
ator. The sk_event::send_and_delete is the only
event synchronization primitive that is necessary in
the event-oriented logical process view. The WarpKit
kernel is implemented on a shared memory architec-
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ture (Fujimoto 1990b). The LP’s event lists reside in
shared memory. Message based communication, i.e.,
sending an event, is accomplished by allowing logical
processes to directly access and modify another log-
ical processes’ event list. Mutual exclusion to event
list 1s provided by software locks.

4.1 Time Warp Constraints

The following constraints extraneous to logical pro-
cess modeling view are native to the parallel syn-
chronization mechanism. Output handling and error
handling should be rollback-able. Hence the mod-
eler should use the member functions provided in the
sk_1p class. General purpose memory management
1s another facility that is provided via the sk_1p class.
The request for dynamic memory does not return if
the allocation request cannot be satisfied due to sys-
tem resource exhaustion. To support parallel simula-
tion in particular, the simulation execution phase has
been divided into 6 cleary defined phases.

State Saving calls must be explicitly programmed
within the LP’s process function. The grab bag of
state savers described by Cleary, Gomes, Unger, Xiao
and Thudt (1994) are provided within the sk_1p class
for incrementally saving basic data types, variable
length data sizes and block state. Options of using
Copy State Saving instead of Incremental State Sav-
ing mechanisms allows simulations programs to be
debugged for correctness before optimizing using 1SS
mechanisms.

Constraints of the Time Warp mechanism and the
parallel executive in particular include :

o event ownership is retained by the kernel when a
LP processes the event (saved in the input queue
until fossil collection)

e lack of any input facility during simulation exe-
cution

o lack of interactivity during simulation execution,
output occurs (usually in bursts) when Time
Warp commits events

o prohibition against using global memory during
simulation execution

e prohibition against LPs invoking member func-
tions of other LPs directly, during simulation ex-
ecution

4.2 Run Time Configuration

Facilities for collecting statistics about the simula-
tion execution, for tracing simulation execution and
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debugging are provided. Two control mechanisms for
tracing and debugging arc provided. One is via com-
pilation flags that conditionally compile into tracing
and debuging code and the other is via run time flags
that specify which bits of the trace and debug code
to activate. Run time flags may be set via configu-
ration file, the command line or the sk_simulation
interface.

5 EXECUTION PHASES

Executions starts and ends with a single thread of
control executing on a single processor. The six
phases are listed below:

1. Program Initialization: The function main be-
gins execution. Application model command line ar-
guments are stripped off and the sk_simulation ob-
ject 1s instantiated.

2. SimKit and Model Global Initialization: In this
phase the sk_simulation object is initialized. Com-
mand line arguments are stripped off and SimKit con-
figuration parameters read from an external file (file-
name may be specified via command line argument).
All model LPs are instantiated and allocated to pro-
cessors. Allocation of LPs to processor is static and
may be optionally specified by the modeler via the
LPs constructor. Global application data structures
(READ only variables) are built during this phase.
This phase ends with passing control to the simula-
tion run time system.

3. Logical Process Initialization: During this
phase, each LP’s initialize member function is invoked
once. Simulation time does not advance in this phase
and no events are received. This phase is used to send
out seed events to start the simulation.

4. Simulation Ezecution: Execution is under Time
Warp control. Events are delivered to LPs by in-
voking the sk_1p: :process function. Here the con-
straints mentioned in the earlier section are enforced.
"This phase terminates either normally due to end of
simulation or abnormally due to an error in the sim-
ulation (committed).

5. Logical Process Termination: Each LPs
terminate function is invoked. This phase is typi-
cally used for reporting LP specific statistics.

6. Simulation Clcan-Up: The simulation run time
system returns control back to the main function.
This phase is generally used to tally statistics and
output final reports.

6 FUTURE DEVELOPMENTS

Future enhancements within the SimKit system will
be devoted to:

¢ providing determinism in the parallel system

e cnabling dynamic creation and destruction of
LPs

e automating the state saving process in simula-
tion modeling

o providing libraries of abstract data types such as
queues, linked lists, etc

o developing tool kits customized for simulation of
specific applications

e providing a development environment that en-
ables visualization of the simulation including
forward and backward execution.

e enhancing the run time system with automatic
load balancing abilities

7 SAMPLE PROGRAM FRAMEWORK

This i1s a sample application model comprising of
Players arranged in a ring topology. Each Player jug-
gles a green ball while tossing a red ball to his/her
neighbor, per unit time. The model counts the num-
ber of balls seen by a Player. Each player is modeled
by a LP and the arrival of a model at a LP is modeled
by a event. The activities modeled in a LP are the
update of a counter (state variable) and the passing
of the ball to itself/neighbor by sending an event.

// Ball class derived from sk_event
class Ball: public sk_event {
public:

Ball( int color )

: sk_event(), color_(color) { /* NULL */ }
const int ball_color() const { return color_; }

private:
int color_;

};

// Player derived from sk_lp
class Player : public sk_1lp {
public:
Player()
: sk_1p() green_cnt_(0), red_cnt_(0)
{ /% NULL */ }

void set_dest( const Player * dest )
{ dest_ = (Player *)dest; }

void initialize();
void process(const sk_event *);
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void terminate();

private:
enum { GREEN = O, RED };
int green_cnt_, red_cnt_; //LP’s state
Player* dest_; // LP’s constant state
};

void Player::initialize()
{ Ball* ball;
sk_time snd_ts, rcv_ts;

rcv_ts = (sk_time)1.0;

// send the startup messages
ball = new Ball( GREEN );
ball->send_and_delete(this,rcv_ts);

ball = new Ball( RED );
ball->send_and_delete(dest_,rcv_ts);

}

void Player::process(const sk_event *ev)
{

Ball* ball;

sk_time Clock = ev->recv_time();

switch ( ((Ball *)ev)->ball_color() ){
case GREEN:
SaveInt( & green_cnt_ );
green_cnt_ ++;
ball = new Ball( GREEN );
ball->send_and_delete(this,Clock+1.0);
break;
case RED:
SaveInt( & red_cnt_ );
red_cnt_ ++;
ball = new Ball( RED );
ball->send_and_delete(dest_,Clock+1.0);
break;
}
}

void Player::terminate()
{
printf("Player[%d]: Grn[%d] Red[%d]\n",
lp_num(), green_cnt_, red_cnt_ );

}

int main(int argc, char **argv)
{ Player *first, *next, *last;
sk_time total_time;

int num_players, i,
// Phase I Kernel Instantiation
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sk_simulation sim_kern;
num_players = atoi(argv[1l);
total_time = atof(argv([2]);
argc = argc - 2;

// Phase II
sim_kern.initialize(arge, argv[3]);
sim_kern.max_in_event_size(sizeof(Ball));
sim_kern.set_end_time( total_time );

// LP instantiation

last = first = new Player();

for (i=1; i<num_players; i++) {
next = new Player();
last->set_dest( next );
last = next;

}

last->set_dest( first );

// Phase III
sim_kern.start_simulation();

// Phase IV & V Kernel control

// Phase VI control returns
s:printf("Simulation ends\n");

8 CONCLUSION

The SimKit system was designed to present a sim-
ple and elegant logical process view of discrete event
simulation enabling both sequential and parallel ex-
ecution without code changes to application models.
SimKit was developed in C++ and exposes the bene-
fits of object-oriented simulation, namely modularity,
improved reliability and reusability. Object Oriented
Simulation is also in accord with the logical process
modeling methodology.

In this paper, a brief overview of the logical pro-
cess modeling methodology is presented. The C++
class libraries that constitute the SimKit System were
outlined. The simulation environment along with the
underlying sequential and parallel simulation execu-
tives were detailed. The paper closed with a tutorial
on how to build object oriented simulation models in
SimKit.

SimKit 1s currently being used by researchers,
simulationists and instructors for parallel simulation
experiments. Continuing development of SimKit,
http://bungee.cpsc.ucalgary.ca/, is devoted to build-
ing specialized class libraries for modeling communi-
cation network, computer system, transportation sys-
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tem and general purpose libraries like streams, linked
lists, trees, cte.
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