Proceedings of the 1995 Winter Simulation (‘onference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

MODULAR MODELING FOR NETWORK SIMULATION LANGUAGES: CONCEPTS AND EXAMPLES

Charles R. Standridge

Department of Industrial Engineering
Florida A & M University - Florida State University College of Engineering
2525 Pottsdamer Street
Tallahassee, FL 32310, U.S.A.

ABSTRACT
Modular modeling supports the fundamental
engineering strategy of dividing problems into

component parts, solving each part, and linking the
solutions together. ~ We discuss the concepts and
capabilities necessary to build modular network
simulation languages and apply them to problem
solving. Necessary modeling constructs are defined as a
part of a new modular network simulation language,
ModNet. and examples are given.

1 INTRODUCTION

Dividing problems into parts. solving each part. and
linking the solutions together is a fundamental
engineering tactic.  This procedure has not been
supported by the network modeling approach employed
by some well-established simulation languages such as
SLAM 11 (Pntsker 1987; Pritsker, Sigal and
Hammesfahr 1994). Supporting such a problem solving
strategy in the context of a network simulation language
seems like an important step forward.

Modular modeling is one proven method supporting
the above approach to problem solving. A model is
comprised of individual components called modules.
As expressed by Cota and Sargent (1992). a model
module should have two propertics, locality and
encapsulation. Locality means that all related
operations, including decisions, are found in one place.
In modeling terms, this implies that all interactions
between particular entities are isolated in one module.
Encapsulation means that the model of these
interactions can be changed without impacting models
of other entity interactions.

The benefits of modular network modeling include
the following:

1. A more structured modeling framework rather
than a single network which is often large, complex.
and confusing.

736

2. Support for model development by a team
whose members work in parallel. Each member of the
team can build modules independently as long the
communication mechanisms between the modules are
well defined.

3. Support for the development of libraries of
modules. Simulation software developers can supply
network modules for direct use or adaptation.
Simulation application experts can build up libraries of
modules to shorten the development cycle for new
models.

4. Increased ease of learning for new simulation
users who can learn smaller, well defined modules
instead of complex (at least in the perspective of a new
user) networks.

This paper describes the concepts and modeling
constructs of a modular network simulation language.
Examples illustrate the concepts. First a brief review of
the modular modeling literature is given.

2  LITERATURE

Various approaches to modular modeling have been
attempted over a number of years. These approaches
include the use of macros to allow a model of a system
component to be replicated within traditional process
languages. the application of libraries of models
expressed as macros in graphical model building to help
tailor modeling constructs to classes of systems, as well
as the use of object-oriented and artificial intelligence
techniques for building modular modeling languages.

Pritsker (1977) describes Q-GERT subnetworks. A
modeler could define a portion of any network as a
subnetwork which could be replicated anywhere within
the network in which it was originally defined. The
duplicated subnetwork could be edited by deleting
existing constructs and inserting additional ones. An
analogous macro capability is provided by GPSS
(Schriber 1991).

Gordon, et al. (1991) describe a graphical simulation
language in which user defined elements can be



Modular Modeling for Network Simulation

constructed to customize the set of modeling constructs
to particular contexts. These user defined elements are
specified as macros built from the existing modeling
constructs.  The authors state that this capability
supports hierarchical modeling and provides an
extensible language. The commercial software package
ARENA (Pegden and Davis 1992) provides similar
capabilities.

The classic modern definition of modular modeling is
given by Zeigler (1990). Atomic components
correspond to modules. Atomic components may have a
number of input ports. An action is taken whenever a
message arrives on an input port. An atomic
component may not directly access the state of another
atomic component.

Cota and Sargent (1992) define a modification of the
process interaction world view to better support modular
modeling. The preemption of the activities of one
process by another prevents proper encapsulation. The
modification provides an alternative to this pre-emption
that supports encapsulation.

The Hierarchical Simulation Language (Sanderson.
et al. 1992) is a simulation language that supports
process world view modules. The language structure
resembles Pascal and belongs to the same category of
simulation languages as SIMULA (Birtwhistle. et al.
1975). The language associates a particular class of
transactions with each module. that is each module can
process only one tvpe of transaction which must be
defined in other modules that invoke it.

Nadoli and Biegal (1993) present a knowledge
representation scheme to achieve modular modeling.
Blackboards are used to model how intelligent agents
make complex decisions in the operation of a
manufacturing system. The manufacturing system is
represented by classes of queueing networks.

Joines, Powell. and Roberts (1992, 1993) and Joines
and Roberts (1994) described a simulation engine
constructed using the object-oriented paradigm and
implemented in C++. The implementation of a network
simulation language. YANSL, based in this engine is
described. The engine is modular and extensible. For
example, the engine could be extended to provide a new
type of branching from network nodes by defining a
new branching class. Additional nodes could be defined
using existing classes for transaction arrivals to nodes
and branching from nodes as well as new classes for
node specific processing.

3 CONCEPTS
Modular modeling has to do with dividing a model into

component parts called modules. Communication
between modules is performed in a well defined manor
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that minimizes the knowledge modules must have about
each other. Each module should represent a single
well-bound interaction between a small number of
physical or logical entitics in the system under study
such as the operations on parts performed at a work
station.

The concepts that were used to guide the design of a
modular network simulation language are as follows:

1. The primary types of entities in a network
model are transactions and resources. A network
module models the interaction of one transaction type
with any number of resources.

2. Each transaction type is contained within one
network module and there is only one transaction type
per module. Transaction attribute values may be
communicated between modules.

This prevision eliminates cloning of transactions,
that is copying a transaction and processing the copy
and the original simultaneously in the same network.
The processing of the original and the cloned
transactions should be modeled in separate modules.

3. Each resource and its possible states are
defined within one network module. The name of the
resource may be passed to other modules where state
transitions are specified. This allows, for example, the
same worker to perform tasks at multiple work stations
where each work station is modeled bv a different
module.

4. All simulation outputs are defined in a single
"main" module.

5. A modular model is not flattened for
implementation purposes. Thus. the simulation engine
always knows what module is being simulated which
facilitates error reporting and observation of
performance measures.

6.  The object-oriented paradigm is the guide for
modularizing a network model.

Figure | shows the structure for a model module
based on these six concepts. An instantiation of a class
corresponds to a module. A new class may be built
from a pre-existing class. There are eight predefined
methods for each class. All of the methods are private
except for NETWORK and MEASURES which are
public. The DATA COLLECTION and EXPERIMENT
methods are specified only for one module per model
which acts as the "main" module. All methods are
optional except for NETWORK. The use of the
methods will be illustrated in the following sections.

4 CONSTRUCTS
The Modular Network Language (ModNet) implements.

demonstrates, and illustrates the modular network
concepts defined in the previous section. The
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name CLASS BASE class_name
INITIAL CONDITIONS

initial state vanable valucs
DATA COLLECTION

variable names
EXPERIMENT

run length, number of replicates, etc.
VARIABLES

type name
MEASURES

variable = expression
TRANSACTION

data structure defining attributes
RESOURCES

definition including state transition rules
NETWORK parameter list

network
END CLASS DEFINITION

Figure 1: Modular Network Class Paradigm

particular ModNet modeling constructs that embody
these concepts as well as those employed by the
examples in the following section will be defined. A
complete definition of the language will not be
attempted here.

4.1 Entity Definition

A ModNet network describes how a transaction is
processed by a system where resources are scarce and
can constrain processing. For example in a
manufacturing system. a transaction can represent a
part and resources the machines and labor required to
perform operations on that part.

In ModNet. a transaction is defined by a structure of
numeric and character attributes whose values
distinguish it from other transactions. Consider the
following example:

Transaction:
NUMERIC time_of _arrival
CHARACTER part_type
NUMERIC position_on_route

The transaction processed by a particular module
represents a part and has three attributes that tell when
in simulated time the part arrived for processing. the
type of the part, and at what station the part currently is
located on its route through the system.

A resource may be in any one of several modeler
defined states. (ModNet has no standard resource states
such as BUSY and IDLE.) For example, a resource
could represent a machine that is either BUSY. IDLE.
or BROKEN. A resource could represent multiple

identical and, for modeling purposes, indistinguishable
machines. The number of units of the resource would
be equal to the number of machines. A resource
representing four such machines could be defined as

follows:

Resource: machine
INITIAL
NUMBER TRANSITION
STATES OF UNITS RULE
broken 0
busy 0
idle 4 PRIORITY
(Q-BROKEN,
Q-BUSY)

A resource named machine is defined with three
states (BUSY, IDLE, BROKEN) and with four units all
of which are initially in the IDLE state.

A resource unit is content to remain in some states,
called active states, and tries to immediately leave other
states called passive states. A transition rule for leaving
passive states must be provided. In the example, BUSY
and BROKEN are active states. A resource unit will
remain in either of these states until the model changes
it to another state. On the other hand. IDLE is a passive
state. The transition rule specifies that upon entering
the IDLE state a resource unit will immediately seek a
transaction to process. first one that is waiting in Q-
BROKEN and next in Q-BUSY if there is no
transaction waiting in Q-BROKEN.

4.2  Module Definition and Reference

The first node in any ModNet network. the
DEFINITION node, gives the name of the class to
which the network method belongs. the base class from
which the new class is derived, and the network
parameters as shown in Figure 2. Since there is only
one network per class and it is always clear from the
context that the network method is being referenced. the
class name serves as a unique identifier of the network.

Class Name
(Base Class Name)

L Parameter | p

Figure 2: DEFINITION Node
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A network is referenced and a ncw object
instantiation of the class to which the network belongs
is created if necessary by use of a REFERENCE node as
shown in Figure 3. Parameters of the reference node
are the class name containing the network, values for
the network parameters, and the name of the
instantiated object.  The transaction reaching the
REFERENCE node may wait until processing in the
referenced module is completed or continue in the
network in parallel with processing in the referenced
module (/p following the class name).

Class Name {/p}

Parameter 1 Value

Object Name

Figure 3. REFERENCE Node

4.3 Communication Between Modules

The DEFINITION and REFERENCE nodcs provide the
mechanism for supplying parameter values to a
network. The two mechanisms for making information
available from a network to all other networks are
known as MEASURES and SIGNALs.

A MEASURES method gives a name by which a
performance measure computed within a network may
be referenced by all other classes. This is analogous to a
method in object-oriented programming whose sole
purpose is to make a variable value available to other
classes without allowing them to change the variable
value. For example. the MEASURES method:

MEASURES

NINQ1 = NQ(WS1)

END MEASURES
allows the number of transactions in the queue with
name WS to be reference by other modules as NINQI.

A SIGNAL node "broadcasts a message" that
something of importance has just occurred in a network
(an event) to which other networks may want to
respond. Values may be associated with a SIGNAL and
referenced in anv network receiving the SIGNAL. A
SIGNAL is referenced by the ModNet variable
SIGNAL(name) as a time delay on an activity. That is,

processing of a transaction ends when the particular
SIGNAL is broadcast. The form of the SIGNAL node is
shown in Figure 4.

SIGNAL name

Variable = expression

Node Name

Figure 4: SIGNAL Node

4.4 Acquiring a Resource and Changing Its State

Any number of the units of any number of resources can
all be changed from one state to another using a
CHANGE STATE (CS) node. If a transaction may
need to wait until units of a resource enter the desired
state. an associated QUEUE node must be provided.
Note that while most network simulation languages
provide two node types for dealing with resources. such
as the AWAIT node for acquiring a resource and a
FREE node for giving up the resource in SLAM II.
ModNet requires only the CS node for all such
operations on resources.

The form of a CS node is shown in Figure 5. Each
resource whose units are to change state is listed along
with the state to change from. the state to change to and
the number of units. In addition. the allocation rule
governs the case when not all units of all resources are
in the specified from states at once. The modeler may
write an allocation rule in the form of IF-THEN-ELSE
statements. Alternatively. a standard rule may be used.
The standard rules are:

JOINT - Change the state of the units of the
resources only when all units of all resources are in the
specified from states.

GREEDY - Change the statc of the units of any
resource whenever the units are in the from state.

SEQUENTIAL - Change the state of the units of
the resources in the order listed from top to bottom.
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Resource | From | To No. of | Allocation
Name State | State | Units Rule
Node Name

Figure 5 CHANGE STATE (CS) Node

4.5 Miscellaneous Constructs

The examples in the next section also use the following
ModNet constructs that are common to most network
simulation languages.

1. A CREATE node with parameters time
between arrivals and marking attribute name.
Specifying the marking attribute name causes the
assignment.

marking attribute = current simulation time.

2. An ACTIVITY with two parameters: time
delay and condition for performing the activity.

3. An END node that terminates a transaction.

4. A QUEUE node with parameter transaction
ordering rule where transactions awaiting resources
reside.

5 EXAMPLES

The following examples illustrate the basic modular
network modeling concepts and how these concepts are
implemented in ModNet.

5.1 Single Work Station

A typical work station consists of an input buffer where
inbound parts wait for processing, a work area where
inbound parts are transformed and an output buffer
where outbound parts wait for transportation to the next
work station. A model of a such a work station could
consist of three modules: one for the arrival process
named ARR. another for work station operations named
WS1. and a third Main module to reference the other
two.

The following concepts are illustrated in this
example.

1. A SIGNAL node is used in the ARR module to
indicate that a part has reached the work station. The
signal is received in the Main module. Thus, the arrival

process can be changed without changing the Main or
WS1 modules.

2. The MEASURES method returns performance
measure values of interest to the Main module from the
WS1 module.

3. A REFERENCE node passes parameter values
from the Main module to the ARR and WS1 modules.

The Arrive class from which the ARR is instantiated
consists only of the NETWORK method shown in
Figure 6. The parameter of the network is AvgTBA, the
average time between transaction arrivals. A CREATE
node models the generation of an arrival followed by a
SIGNAL node which tells that the arrival has occurred.

EXPON(AvgTBA)

Arrive Here

AvgTBA

Figure 6: Arrive Class for Work Station Example

The STATION class from which the WS1 module is
instantiated. Figure 7. has the NETWORK.
TRANSACTION, RESOURCE. and MEASURES
methods. The parameter of the network is OpTime. the
operation time for a part transaction at the station.
OpTime is a transaction attribute. The resource named
WS has two states. BUSY and IDLE. Initially there is
one unit of WS in the IDLE state. Performance
measures are the number of transactions queued for the
work station, NINQ, and the utilization of the work
station resource, UTIL.

Transaction Resource Measures
OpTime ws NINQ = NQ(Q
BUSY 0 UTIL = NIS(WS, BUSY)
IDLE 1
Stanon
OpTime -~ | wWs|IDLE [BUSY| !
Q1 Cs1
OpTime

Y

WS [BUSY|IDLE |

| csz2

Figure 7. Station Class for Work Station Example
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In the network, a transaction waits in QUEUE node
Q1 for the work station resource WS to become IDLE at
CS node CS1. After the operation is performed, the
state of the work station resource is made IDLE at CS
node CS2.

The Main class has the NETWORK and DATA
COLLECTION methods, Figure 8.  The network
consists of a REFERENCE node for the Arrive class
that instantiates the module named ARR as well as a
reference node for the STATION class that instantiates
the work station module named WS1. The SIGNAL
name HERE from the module WSI is referred to as
ARRHERE. Thus whenever a transaction arrives in
ARR, a transaction is generated at the CREATE node in
the MAIN class.

Data Collection
WS1 NINQ / Time-Persistent
WS1.UTLL / Time-Persistent

Main Amve
\l 50
ARR
ARR HERE
Station
40

WS1

Figure 8: Main Class for Work Station Example

The DATA COLLECTION method collects the
values of the variables in the MEASURES method of
the WS1 module: WS1 NINQ and WS1.UTIL.

5.2 Serial System

A serial manufacturing svstem consists of a sequence of
work stations with parts moving between them via some
material handling device. In an unpaced system. the
expected operation times for parts vary between work
stations. Thus when a work station completes its
operation on part, the following work station may still
be processing a part. By placing the completed part in a
buffer between the stations. the preceding work station
may begin processing another part. If the buffer is full.
the preceding station has no where to place the
completed part and cannot begin working on another
part. In this case. the work station is in the BLOCKED

state. Time in the BLOCKED state is unproductive and
may lessen system throughput, the number of parts
completed per unit time. Preventing blocking requires
buffer space that may be scarce. Thus, BLOCKED time
and buffer space trade off against each other.

In this example, a four station serial system is
modeled. Therc is a buffer of finite size between each
pair of stations.  Sufficient storage space exists
preceding the first station. One module models the
entire line. It references four modules, one for each
work station. The first and last station are special cases.
The first station has no preceding buffer and the last
station no following buffer. The three classes of work
station modules are First_Station, Last_Station. and
Inter_Station. The part arrival process is modeled in a
separate module. ARR. A Main module organizes the
others.

The following concepts are illustrated in addition to
those used in the first example.

1. The model of the four station serial system uses
variations of the work station class Station developed in
the previous example.

2. The special casc station classes, First_Station
and Last Station. are derived from the more general
class. Inter_Station.

3. The states of units of multiple resources are
changed concurrently at CS nodes.

4. Resources common to a multiple work stations
are defined in the module modeling the entire line. The
resource name is passed to the work station module
from the defining module.

5.  The same Arrive class developed in the first
example is used in this example.

The Inter_Station module is shown in Figure 9. The
network has three parameters: the operation time at the
station. OpTime, the name of the resource modeling the
preceding buffer. BUF_LAST: and the name of the
resource modeling the following buffer. BUF_NEXT.
The only attribute of a transaction is OpTime. In
addition to the two resources modeling buffers. the
resource WS represents the station which can be BUSY
working on a part. IDLE. or BLOCKED waiting for a
completed part to move to the following buffer.

A transaction representing a part waits in QUEUE
node QI for the work station resource to become IDLE.
As modeled in CS node CS1. the part can then leave the
inter-station buffer and begin processing on the work
station. Thus. one unit of the work station resource
becomes BUSY and one unit of the inter-station buffer
becomes IDLE. The ALLOCATION rule in node CS1
is SEQUENTIAL to enforce the requirement that the
part needs the IDLE work station before giving up its
space in the buffer. The part is then processed by the
work station. Upon completion of processing. the part



742 Standridge

Transaction Resource Resource Resource
OpTume ws BUF_LAST BUF_NEXT
BUSY 0 BUSY BUSY
IDLE I IDLE IDLE
BLOCKED 0
Inter_Stabon ws IDLE | BUSY] 1
OpTime BUF_LAST |BUSY| IDLE| 1
BUF_LAST [ o] cst
BUF_NEXT
OpTume ws BUSY BLOCKED |1
~ 1 BUF_NEXT| IDLE BUSY 1
ws BLOCKED [IDLE 1
Cs2

Figure 9: Inter_Station Class of the Serial Line Example

transaction enters QUEUE node Q2 associated with CS
node CS2. In sequence, the work station resource enters
the BLOCKED state and the part transaction awaits an
IDLE unit of the resource BUF_NEXT representing an
open space in the following buffer. When this space
becomes available, the transaction leaves the work
station and the work station resource enters the IDLE
state.

The First_Station class. shown in Figure 10. is
derived from the Inter_Station class. The only changes
are in the network. The BUF_LAST parameter is not
needed since there is no buffer preceding the first
station. The state change concerning this resource is
removed from the CS node name CSI. In a similar
fashion. the Last Station class is derived from the
Inter_Station class. The BUF_NEXT parameter is
removed as is the state change concerning this resource
at node CS2. All other methods arc the same as in

Inter_Station.
Furst_Station
BASE _-|Wws IDLE | BUSY
Inter_Station

OpTuime m csi
BUF_NEXT
OpTime ws BUSY  |BLOCKED |1
BUF NEXT|IDLE  [BUSY ]
ws BLOCKED [IDLE f

o2

Figure 10: First_Station Class of the Serial Line
Example

The LINE class shown in Figure 11 has three
RESOURCES that model the three buffers. The

MEASURES method makes the number of busy units of
each buffer resource available to other modules. The
NETWORK consists of one DEFINITION node and
four REFERENCE nodes. one for each work station.
The First_Station and Last_Station classes are
instantiated once and the Inter_ Station class twice to
model the second and third stations.

Resource Resource Resource
BUF12 BUF23 BUF34
BUSY 0 BUSY 0 BUSY 0
IDLE S IDLE 5 IDLE §

Measures
NIBUF12 =NIS(BUF12.BU'SY)
NIBUF23 =NIS(BUF23,BUSY)
NIBUF34 = NIS(BUF34,BUSY)

Line First_Stanon
48
BUF12 /

\j

Wwsi

lnrer_Staton Inter_Staben
4 19 >
BUFI2 BUF2}
BUF2} BUFM

ws2 AN
Last_Stanon
48
BUF3M

WS4

Figure 11: Line Class of the Scrial Line Example

The Main module shown in Figure 12 is similar to
the Main module for the previous example. An object
with the name ARR is instantiated from the Arrive class
to model the arrival process to the system. A CREATE
node generates a transaction with attribute TA given the
value of the current simulation time whenever ARR
signals that an arrival has occurred. Next. the Line
class is emploved to simulate the operations of the serial
line. Finally, an END node models the departure of the
transaction. The Main module gathers statistics on the
number in each buffer and the time transactions spend
in the system.

6 SUMMARY

One way of bringing thc benefits of modular modeling
to network simulation languages has been discussed.
Concepts for modular nctwork models have been
presented. The object oriented paradigm provides a
guide to the design of a module consisting of standard
methods for defining entities. data collection.
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Data Collection Transaction
PROC NIBUF12/ Time-Persistent TA
PROC.NIBUF23/ Time-Persistent
PROC.NIBUF34/ Time-Persistent
CLOCK-TA@EXIT/ Observed

Main Arrive
5.0
ARR
ARR.HERE
TA Line
40
PROC

Figure 12: Main Class for the Serial Line Example

communication between modules and experiments as
well as a network model. ModNet is a new modular
network simulation language that is based on these
concepts. Modeling constructs particularly needed for
modularity have been defined and example models are
given.
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