] [yi ati ‘onference
Proceedings of the 1995 Winter Simulation Con ' ’
ed. C. Aleiopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

THE KEY TO OBJECT-ORIENTED SIMULATION:
SEPARATING THE USER AND THE DEVELOPER

Pete Ball

DMEM
University of Strathclyde
Glasgow, G1 1XJ, UNITED KINGDOM

ABSTRACT

Simulation tools should be both easy to use and
applicable to a wide range of problems. In practice,
however, a compromise exists giving rise to a range of
software from simulators to simulation languages.
Object-oriented techniques have the potential to
overcome this compromise; the ability to reuse and
extend software could enable the development of a
simulator that would be extended over time. The use of
object-oriented techniques to date has mainly resulted in
the development of powerful but difficult to use
libraries. Ideally the skills of manufacturing engineers
should be concentrated on building models of
manufacturing systems whilst the skills of software
developers should be concentrated on adding new
functionality. This paper presents a mechanism
whereby the roles of engineer and developer are clearly
split to provide an easy to use simulator with a
potentially very wide range of application.

1 INTRODUCTION

A range of simulation tools exists for use in modelling
systems. At one extreme are simulation languages
which are flexible but relatively difficult to use and at
the other extreme are data driven simulators which are
quick and easy to use but lack the range of potential
application (Shewchuk & Chang 1991). Between these
two extremes lie a large number of packages which are
essentially a compromise between ease of use and range
of application. This paper examines how this
compromise should be overcome.

Ideally simulation tools should be quick and casy to
use yet offer sufficient modelling power to allow wide
application. Ease of use is a significant issue as it can
dictate whether typical manufacturing engineers could
use the simulation software and whether the software

768

Doug Love

Mech & Elect Eng
Aston University
Birmingham, B4 7ET, UNITED KINGDOM

could be applied within the time scales permitted.
Some software systems attempt to combine the two
requirements by combining the concepts of data driven
simulator with some sort of programming interface.
Whilst this overcomes the limitations of simulators it
results in a tool that is more difficult and time
consuming to use.

One approach is to use domain specific simulators
(see Pidd 1992), e.g. for modelling low technology
batch manufacturing systems, and modify the software
when new needs arise. This approach is difficult to
adopt in practice due to the need to have access to the
source code and have the skill to understand and modify
it. Such modifications are likely to give rise to an
increase in complexity and a reduction in the overall
robustness. With each modification the task of
modifying and maintaining the software becomes
progressively more difficult.

The use of object-oriented (OO) techniques has the
potential for developing software that is relatively easy
to maintain, can be re-used and contains close
abstractions of real world concepts (Graham 1994).
The use of OO techniques could assist in overcoming
the ease of use vs. range of application compromise.
Whilst there has been significant activity in the
application of OO techniques to simulation software
currently there are few, if any, systems that demonstrate
benefits other than to skilled users.

This paper examines the roles of different types of
user in the creation and use of simulation software. The
use of object-oriented techniques will be examined and
their use in the creation of simulation software will be
discussed. The work that was carried out is
concentrated in the area of manufacturing systems. The
issues discussed in this paper relate to the creation and
use of the software rather than its application in
manufacturing and therefore the principles will be
relevant to other application areas.

Key to Object-Oriented Simulation 769

2 OBJECT-ORIENTED SIMULATION
2.1 Object-Oriented Libraries

Since the development of the Simula simulation
language there has been increasing interest in object-
oriented (00) concepts. OO concepts applicable to
simulation software development are:

e design and analysis techniques for the abstraction of
real world concepts in software classes;

e design and analysis techniques for the development
of the overall software design;

e programming techniques for the implementation of
the designs.

These points are illustrated in Figure 1.

Abstraction
/ :
OO techniques \ Design
:

Implementation

Figure 1: Role of OO Techniques

As Nof (1994) observes, there are underlying
relationships between manufacturing and object-
orientation which make OO particularly appropriate.

Using OO techniques for developing software
results in the creation of a library of classes. For
example a manufacturing system class library would
include operators, machines, parts, routings, trucks and
storage areas. Examples of libraries include BLOCS/M
(Glassey and Adiga 1990) and a highly reusable library
(Bhuskute et al. 1992). The use of the library concept
allows great flexibility for modelling. Different classes
can be used for building models as and when required.
As new modelling needs arise new classes can be
developed.

The use of such libraries alone is inefficient.
Software needs to be developed to support the libraries.
Creation of this software is time consuming and
requires skill; users need to be able to develop complex
software, use language syntax, understand detailed
abstract simulation logic as well as understand and use
00 techniques. This latter point is significant as it is
generally accepted that there is a significant learning
curve associated with the use of OO techniques.

2.2 Object-Oriented Simulators

The application of OO techniques to data driven
simulators would seem to offer significant benefits.
End-users would be able to build simulation models
casily taking advantage of the close mapping between
objects in the simulated and real world. If the need to
add new functionality to the system arose then the OO
characteristics should lead to a reduction in the
development time and risks involved (Figure 2).

OO simulator

/\

Abstraction of reality Complexity contained

| l

Ease of use

Ease of extension

Figure 2: Benefits of an OO Simulator

A number of systems have been developed that
have a data driven interface and have utilised object-
oriented programming techniques or principles in their
construction. Examples include the object-based Arena
(Collins & Watson 1993), ProModel (Harrell & Tumay
1991) and Simple++ programmed using OO and the
object-oriented simulator SIMMEK (Borgen &
Strandhagen 1990). Arena and Simple++ have
demonstrated a capability to expand to adapt to new
requirements. Arena uses a series of templates to
develop models. The range of templates can be
extended by an experienced user. The limitation of this
approach is that the extension mechanism is
functionally-based, not object-based, and therefore does
not take full advantage of encapsulation or inheritance.
Similarly in Simple++ inheritance would appear to be
functionally based and thereby fail to support
polymorphism and containment of complexity.

An important issue in the use of object-oriented
techniques is whether the user actually benefits. If there
is no significant change in the way the user sees or
interacts with the system or in the potential benefits
offered then the choice of programming style is largely
irrelevant. One of the bencfits that could be claimed
from the use of OO techniques is the generation of a
user interface that has a close correspondence with
reality and is therefore easy to use. Whilst this may be
so, ATOMS (Love & Bridge 1988) was developed using
traditional software construction techniques and yet its
user-interface has a close correspondence with
manufacturing systems which it was designed to model.

770 Ball and Love

Object-oriented techniques have significant benefits
to offer but these must be utilised effectively. Unless the
underlying software architecture provides some
potential advantage to the user then the use of the
programming technique has no relevance. For example,
unless the power of OO techniques is to be utilised to
provide new functionality the choice of programming
technique is simply for developer convenience rather
than any long term advantage.

3 TWO TYPES OF USER

3.1 Combining OO and Simulators

Object-oricnted techniques have the potential for
replicating real world concepts and terminology within
software. The techniques can be used to develop
software that is robust, reusable and extendible. As new
needs arise new functionality can be developed.
Applied correctly, the use of OO techniques has the
potential to provide significant benefits to the user.

The concept of data driven user-interfaces enables
models to be built quickly and easily and allows the
users to concentrate on the modelling task at hand
rather than the abstract software development. A tool
that has both a data driven user-interface and an
underlying (well designed) software architecture will be
very powerful. The tool could be readily expanded and
would be quick and easy to use.

3.2 Separation of Users

Whilst the concepts of OO and data driven could be
combined into a single tool it is not necessary for the
tool to be applied by a single type of user. The
developer of OO simulation functionality does not
necessarily have to be the same person who applies the
simulation tool. Indeed it could even be desirable to
enforce this separation. We might call these two types
of user the ‘developer’ and the ‘engineer’, (Figure 3).

Two modes of operation

— T

ENGINEER DEVELOPER

Ease of application Ease of modification

New requirements New functionality

\/

Improved Simulator

Figure 3: Two Modes of Simulator Use

Individuals able to develop object-oriented
simulation software are able to develop simulation
classes relatively easily. The developers need to be
familiar with software design, language syntax,
simulation techniques and the construction of the
particular class libraries used by the system. In addition
they need to have an appreciation of the target
applications area, otherwise the allocation of
functionality across the class structure is likely to be
incorrect. For example, failure to include operators in a
library or only to develop operators as resources to be
acquired and released presents problems when the need
arises to model operators as proactive entities.
Familiarity with these areas takes a considerable
amount of time to acquire.

Manufacturing engineers wishing to use simulation
software will understand, in general terms, the
behaviour of the manufacturing system they wish to
examine. Whilst they will not require any knowledge of
the internal structure of the simulator, they will need to
understand the properties of the objects, the way a
model is constructed and how the simulation
experiments should be set up and analysed. The
engineers will understand the problems with the system
and will have ideas about possible solutions. Engineers
will benefit from using simulation both from the process
of building the model as well as obtaining results from
it.

With the type of simulation tool proposed,
confining individuals into two distinct roles of
developer and engineer has a number of advantages:

e the engineer does not have to understand the
underlying software architecture, software
engineering techniques and detailed simulation
techniques;

* the engineer does not develop poorly written
software that has limited application and affects the
robustness of the system;

e the engineer is able to spend more time on
generating and interpreting results and less on
model building;

* the engineer applies engineering skills to
engineering problems;

e the developer applies programming skills to
software development;

e the developer has the time and skill to create robust,

variant functionality quickly to meet the engineers’
needs;

* the developer can consider the needs of a wider
audience rather than focusing only on the needs of a
specific project.

Key to Object-Oriented Simulation 771

3.3 Combination is Powerful

The two types of user would complement one another in
their activities. Each type of user expends their time
and skills on appropriate tasks. The software
developers can develop new functionality (classes) as
new user requirements evolve, see Figure 4. The new
functionality can be distributed to the various users.
The engineers in turn would apply the new functionality
to create models more easily and more representative of
the system being modelled.

application of simulator

N

new requirements new functionality

~.

development of new classes

Figure 4: ‘Reuse’ of an OO Simulator

This approach combines the ease of use and
flexibility into a single tool but does not place an
additional burden on the users. The engineer is able to
apply the tool easily and as new needs arise it is the
responsibility of the developers to meet them. This
prevents the engineer’s task becoming more difficult
and means that when the new functionality is developed
it can be used by many rather than just one.

In this context the term ‘engineer’ applies to
anyone able to build models using data driven
simulation software. The term ‘developer’ describes
individuals able to develop object-oriented simulation
software and is therefore not restricted to the original
developer.

4 THE ARCHITECTURE

This section develops the idea of combining ease of use
and flexibility into a single tool but maintaining
separate users. The approach to the simulator design
will be described along with the way in which it is used.

4.1 Ease of Extension

For any software architecture to deliver flexibility it
must be easy to extend. As new needs arise developers
extend the software by adding new functionality. Ease
of extension covers the issues of how much knowledge
of the whole software is required to add new
functionality and how much of the existing software
must be modified.

In the ideal situation it would be possible to add
new classes (functionality) to the simulator without any
knowledge of the existing software construction. Whilst
this is not possible the amount of knowledge required
can be kept to a minimum. For example to add a new
machine class knowledge would be required of existing
machine classes, batches and operators. Knowledge of
how the object would be displayed on the screen,
scheduled on an event list or results collected is not
nccessary. The design should therefore ensure many of
the latter mechanisms are provided automatically. One
way of doing this is to place the mechanisms in abstract
classes which the new class inherits, see Figure 5.

Figure 5: Inheriting Simulation Mechanisms

The second issue of software extension is the degree
of modification of existing software. If a large amount
of existing code must be modified then this complicates
the process and, more significantly, the software. As
more classes are added more modifications are required.
An example would be the addition of a new type of
machine requiring the modification of all those classes
likely to interact with it, including operators, repair
people and batches.

As each modification is made the software becomes
more complex and more difficult to extend. Ideally a
new class should be added by a simple process of
registration of the new class with the system. Thus
classes could be added without increasing the
complexity of the system, see Figure 6.

Operator

Figure 6: Registering Classes

779 Ball and Love

Simply adding a new class to a hicrarchy is not
sufficient to enable interaction with other classes. Some
means must be sought to enable interaction but to
prevent increase in complexity. For cxample the
operators must be made awarc of a ncw machine type
without requiring modification of the operator code.
One possible mechanism for this is 1o use message
passing. Here the term “message passing” would not be
a substitute for the term ‘“method” but would be a
separate, distinct mechanism. Each class is assigned
one method for receiving messages, see Figure 7.

tNewClass = OBJECT (tExistingClass)
PUBLIC { accessible by other classes }

CONSTRUCTOR Init(.....)
DESTRUCTOR Done; VIRTUAL;
PROCEDURE ReceiveMsg (pMsg:tMsgPtr);

PRIVATE { only for use by this class)}

PROCEDURE Load(...);
PROCEDURE Run(...);
PROCEDURE Stop(...);

PROCEDURE etc.

END; { Definition of class : tNewClass }

Figure 7: Access Only Via ReceiveMsg Method

This is in contrast to approaches in which the list of
messages a class can receive actually refers to a list of
public methods.

Using this approach, one object would send a

message (actually an object itself) to another object.

Since all classes have the same receive message method,
any object can send a message to any other object even
if the target object is a newly added class. Hence when
a new machine class is added, operator objects can be
assigned to the new machine at run time and send
messages to it without any prior knowledge of it being a
new or old machine, see Figure 8.

Destination???

OldMachine7
Load Run
New imlrucliwn“‘

Figure 8: Messaging New or Old Objects Without
Modification

Mechanisms that provide general features necessary
for all simulation models (such as results collection,

graphical displays, event list management and load and
save management) exist but are distinctly separate from
the modelling functionality. This approach allows any
type of functionality to be added and still benefit from
the use of the general features.

All additions to the simulation software would be
made by a software developer.

4.2 Ease of Use

A data driven user-interface can be employed to provide
casc of use. The interface should possess features and
terminology that are familiar to the user. This type of
user-interface would not be too dissimilar from other
simulator interfaces such as ATOMS (Love & Bridge
1988) or ProModel (Harrell & Tumay 1991).

Whilst menus and dialogs are available for entering
data and selecting logic there is no programming
interface. The user is unable to conceive, implement
and refine logic and thereby the speed and ease of use is
preserved. If new requirements arise the developers can
work to meet them.

Elements of the user-interface would fall into two
categories: general and functionality specific. The
general features (such as results display) would be
created initially and would require little, if any,
modifications over time. As new functionality is added
menus and dialogs would be created to view and edit the
data, e.g. a dialog to edit the data of a new machine.

5 PROTOTYPE SOFTWARE

Demonstration of the principles introduced can be found
in the Advanced Factory Simulator (AFS) (Ball & Love
1994). AFS has been developed as an object-oriented,
data driven simulator. The use of QO principles has
been applied throughout the construction of the software
giving data driven capabilities combined with ease of
extension.

5.1 OO Simulation Architecture

The simulation architecture refers to the significant
element of software that is required to support the
application classes, such as the machines and operators.
The architecture includes the load and save
management, the results collation and display, the
simulation executive, the graphical displays, the reset
mechanisms, support for editing the interaction of
objects, etc.

The simulation architecture was a key consideration
and was designed and developed in tandem with the
application classes. By adopting this approach the
architecture design was such to ease the task of adding

Key to Object-Oriented Simulation 773

new functionality. One of the prime design criteria was
that the addition of new application classes should not
increase the complexity of the whole software. The
complexity refers to the interaction between the
application classes and between an application class and
the supporting architecture.

The process of adding new classes is extremely
simple. The class and a class manager are created,
invariably inherited from existing classes. The class
manager’s role is to provide a link between the user-
interface and the objects of the particular class. The
class manager is then added to a registration unit that
simply involves placing an object of the class manager
on a list. This process is all that is required to add a
new class. The difficult part, the part that requires the
skill of a software developer, is to develop the newly
added class to abstractly model the behaviour of some
aspect of the real world. This is the time consuming
element that is undesirable for the engineer to become
involved in.

5.2 Data Driven User-Interface

The required properties of the user-interface have been
described already; data driven in style and employing
terminology and concepts from the problem domain.
The Advanced Factory Simulator (AFS) uses an
interface typical of Microsoft Windows. A typical dialog
is shown below in Figure 9.

ator edit

12} (_Addnew]

Oper
Name [BayGrindl

Description [ADegc[ip'ian

Shift pattern '§104_5day:-week

[2] [Ledit]
Li_i Zediti

Department [GrindCell

[Performance : percent

Efficiency [Normal %] [Mean 80.0. Std dev 3.0.] (3edt]

[Walking speed : centimetres / second
Speed [Fixed zi [Fixed at : 50

[Skills and priorities
Adjust Priority Skill

A Rapair
] 2 ChangeOver

3 SingleMach

a Inspection

I

4 Cunent State : Off shift

Coordinates

YRR o R

The data requirements are typical of the
information available within a factory, for example shift
patterns, routing data, reliability data and order data.
There is no access either to the underlying software
code or a high level simulation programming language.

5.3 Advantages of Approach

The advantages of this approach have already been
described; engineers can use the software without the
need to program whilst developers can provide a greater
range of functionality. In addition to this key
combination there are a number of other benefits.

In addition to creating variant shop floor classes,
such as new types of machine tools, more radical
additions can be made. Since the architecture will
support any type of functionality then the functionality
does not have to be directly related to the shop-floor. A
number of significant additions have been made. One
group of additions is a set of production planning and
control classes (Boughton & Love 1994). These classes
have been added to the core system with minimal
increase in complexity and can be used to simulate
different production planning and control system
configurations. Modelling can either be stand alone or
include the shop floor entities.

The user-interface can be readily modified to
include new types of dialogs. The process simply
involves designing and developing the dialog followed
by its registration within the user-interface. This allows
variant dialogs to be created. Dialogs can be
significantly different to those in existence. For
example, a “wizard” has been added for the
development of “U”-shaped cells (Ball & Love 1995).
This wizard uses the existing functionality to guide the
engineer through the process of designing and
modelling such cells. The dialog prompts the user at
each stage for additional data and provides feedback on
the likely performance of the cell prior to simulation.

6 SUMMARY AND CONCLUSIONS

This paper identified the benefits and drawbacks and
discussed the development of object-oriented software.
It was asserted that current approaches do not make full
use of the potential of object-oriented techniques. The
roles of “engineer” and “developer” were examined. It
was argued that whilst it is beneficial to combine data
driven and object-oriented techniques it is undesirable
to combine the engineer and developer roles. A
mechanism was described that allows the engineer and
developer roles to be kept separate whilst at the same
time combining the benefits of the data driven and
programming tools.

774

Using this approach it is possible to build up a
library of functionality. Becausc the soltware is created
by developers, not users, the functionality is applicable
to a wider range of situations and thercfore can be
distributed to other uscrs. The ability to support an cver
increasing range ol functionality —removes the
limitations typically associated with simulators.

ACKNOWLEDGEMENTS

The authors would like to thank Lucas Engincering &
Systems Ltd. for its support.

REFERENCES

Ball, P.D. & Love, DM. 1994, Expanding the
capabilities of manufacturing simulators through the
application of object-oriented principles. Journal of
Manufacturing Systems, 13 (6): 412-423.

Ball, P.D. & Love, DM. 1995. Development of
simulation techniques for the design of nagare flow
production systems. In Proceedings of the
International MATADOR conference, 111-116.
UMIST, Manchester, UK.

Bhuskute, H.C., Duse, M.N., Gharpure, J.T., Pratt,
D.B., Kamath, M. & Mize, JH. 1992. Design and
implementation of a highly reusable modelling and
simulation framework for discrete part
manufacturing systems. In Proceedings of the
Winter Simulation Conference, eds. J.J.Swain,
D.Goldsman, R.C.Crain, & JR.Wilson, 680-688.
Institute of Electrical and Electronic Engineers,
Arlington, Virginia, USA.

Borgen, E. & Strandhagen, J.O. 1990. An object
oriented tool based on discrete event simulation for
analysis and design of manufacturing systems. In
Optimization of Manufacturing Systems Design:

International ~ Conference Proceedings: North-
Holland Publishing Company: 195-220.
Boughton, N.J. & Love, DM. 1994, An object-

oriented approach to modelling manufacturing
planning and control systems. In Proceedings of the
National Conference on Manufacturing Research,
426-430. Loughborough University, Loughborough,
UK.

Glassey, CR. & Adiga, S. 1990. Berkcley Library of
Objects for Control and Simulation of Manufacturing
(BLOCS/M). In Applications of Object-Oriented
Programming, Eds. L.J.Pinson & R.S.Wiener, New
York, USA: Addison-Wesley Publishing Company.

Graham, 1. 1994, Object-Oriented Methods.
Wokingham, UK: Addison-Wesley.

Harrell, C.R. & Tumay, K. 1991. ProModel tutorial. In
Proceedings of the Winter Simulation Conference,
eds: B.L.Nclson, W.D.Kelton, & G.M.Clark, 101-

Ball and Love

105. Institute of Electrical and Electronic Engineers,
Pheonix, Arizona, USA.

Love, D.M. & Bridge, K. 1988. Specification of a
computer simulator to support the manufacturing
system design process. In 3rd International
Conference on Computer-Aided Production
Enginecring, 317-323. Ann Arbor, Michigan, USA.

Nof, S.Y. 1994. Critiquing the potential of object
oricntation in manufacturing, International Journal
of Computer Integrated Manufacturing, 7 (1): 3-16.

Pidd, M. 1992. Guidelines for the design of data driven
generic simulators for specific domains. Simulation,
59 (4): 237-243.

Shewchuk, J.P. & Chang, T.C. 1991. An approach to
object-oriented discrete-event simulation of
manufacturing systems. In Proceedings of the
Winter Simulation Conference, eds: B.L.Nelson,
W.D.Kelton, & G.M.Clark, 302-311. Institute of
Electrical and Electronic Engineers, Phoenix,
Arizona, USA.

AUTHOR BIOGRAPHIES

PETER D. BALL is a lecturer in the department of
Design, Manufacture and Engineering Management
(DMEM) at the University of Strathclyde, Scotland. He
holds a BEng in mechanical engineering and a PhD in
manufacturing simulation from Aston University. His
research interests cover manufacturing system design
and the development and application of simulation
tools. He is an associate member of IEE
(Manufacturing Division) (UK).

DOUG M. LOVE is a lecturer in the department of
Mechanical and Electrical Engineering at Aston
University, England. He holds a BSc in mechanical
engineering from Manchester University and a PhD in
the dynamic behaviour of manufacturing systems from
Aston University. He has worked in production control,
as a product manufacturing manager and as an
industrial engineer designing group technology cells.
His research interests concentrate on the design and
operation of cellular manufacturing systems; he has
published papers on Distributed MRP (DMRP) systems,
simulation in manufacturing systems design, and the
development of computerised component coding
systems. He is a member of IEE (Manufacturing
Division) (UK).

