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ABSTRACT

Due to the high complexity of semiconductor manu-
facturing systems simulation has become a useful tool
for the performance analysis of these systems. How-
ever, there are some serious problems in analyzing
simulation output data. For example, the quality of
confidence intervals for certain performance measures
is affected by correlations among the data. Further-
more, analyzing the correlation of simulation output
data might give valuable hints for understanding the
behavior of complex systems such as semiconductor
manufacturing systems.

In this paper we will present examples where we
detected remarkable correlation phenomena in the
simulation output of semiconductor fabrication facil-
ities caused by exo- or endogenous factors. Based on
real specifications we examine several semiconductor
manufacturing systems in steady state. First we cal-
culate the autocorrelation function of the sequence of
successive cycle times and then compute the corre-
sponding frequency spectrum. By this means, peri-
odicities in the simulation output data can efficiently
be determined.

1 INTRODUCTION

Semiconductor manufacturing is among the most
complex manufacturing processes according to Gise
and Blanchard (1986) and Sze (1983). A semiconduc-
tor chip is a highly miniaturized, integrated electronic
circuit consisting of thousands of components. Every
semiconductor manufacturing process starts with raw
wafers, a thin disc made of silicon or gallium arsenide.
Up to a few dozens of identical chips can be made on
each wafer, building up the electronic circuits layer by
layer. Depending on the scale of integration, the type
of chip, customer specs, the whole manufacturing pro-
cess may require up to 500 single steps. Most of these
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operations involve cleaning, deposition, lithography,
etching, ion implantation, and testing, and they are
therefore basically of the same type. Note, that there
are no assembly operations before reaching the back-
end stage of the production process.

Several performance measures are commonly used
to describe and assess a semiconductor manufactur-
ing facility. To highlight the most important of those
we mention machine utilization, production yield,
throughput, and cycle time. We define cycle time
as the time a lot of wafers needs to travel through
the core semiconductor manufacturing process. The
capability of meeting due dates has become a crucial
factor in global manufacturing competitiveness. Con-
sequently operations managers have to ensure short
and predictable cycle times.

Simulation is gaining more and more importance
in the planning process of a semiconductor fabrication
facility, using sophisticated and well designed simu-
lation tools. However, most studies published so far
only consider the mean and variance of certain perfor-
mance measures of the system. This is done although
several authors, e.g. Law and Kelton (1951) and Fish-
man (1978), stress the fact that simulation output is
always correlated and may lead to wrong variance
estimates. Furthermore, the analysis of the correla-
tion of the simulation output data might give valuable
hints for the understanding of complex systems. Fi-
nally, one cannot deny the fact that correlated input
to a queueing system may have a tremendous effect
on its performance, cf. Livny, Melamed, and Tsiolis
(1993) and Rose (1995). Consequently, if the output
process of a system is heavily correlated it impairs the
performance of downstream production stages, e.g. in
terms of cycle times. This could be for example a fa-
cility where semiconductor products are packed for
shipping or used as assembly parts.

The major methods that estimate the autocorre-
lation structure of time series in general and simu-
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lation output data in particular arc the autoregres-
sive method, developed by Fishman (1973) and the
method of spectrum analysis, cf. Schlittgen (1987)
and Oppenheim and Schafer (1989). However, from
our point of view, the latter method has not become
a common tool among simulation practitioners, prob-
ably due to the fact, that this technique, according
to Law (1983), requires “a fairly sophisticated back-
around on the part of the analyst”.

In this paper we will present examples where we
detected remarkable correlation phenomena in the
simulation output of semiconductor fabrication facil-
ities caused by exo- or endogenous factors, using the
method of spectrum analysis.

2 LITERATURE REVIEW

Due to the growing competition among semiconduc-
tor manufacturers, research and development efforts
in terms of the optimization of semiconductor wafer
fabrication have increased. Dayhoff and Atherton
(1984) and Lohrasbpour and Sathaye (1984) pre-
sented simulation models of semiconductor manufac-
turing facilities, and discussed the influence of system
parameters on the overall performance of these facili-
ties. Glassey and Resende (1988) introduced a closed
loop job release mechanism for jobs in which random-
ness is primarily caused by machine downtimes. They
adapted certain concepts of inventory control meth-
ods to the context of job shop scheduling and com-
pare these concepts with other input control mech-
anisms. A more general approach is the CONWIP
principle, cf. Hopp and Spearman (1991), Spearman
(1992). Wein (1988) assessed the impact of several
scheduling strategies on the performance of semicon-
ductor wafer fabrication in terms of cycle time. He
observed that input control has an even greater im-
portance in reducing cycle times.

To the authors’ knowledge, there are very few
papers concerning the application of the method of
spectrum analysis. Law (1983) summarizes the tech-
niques for statistical analysis of simulation output
data. Duket and Pritsker (1978) discuss some is-
sues of spectral methods. Heidelberger and Welch
(1983) present a method for placing confidence in-
tervals on the steady state mean of a discrete event
simulation output sequence. This method is based
on obtaining estimates of the variance by estimating
the spectral density at zero frequency. They show
some typical examples for response time and waiting
time spectra of queueing systems that do not exhibit
long term correlations. Schruben and Cogliano (1987)
present an experimental procedure for simulation re-
sponse surface model identification. Since they run

their experiments in the frequency domain, they use
the frequency spectrum of the output process to de-
termine significant factors. They focus on arbitrary
chosen, exogenous factors that cause certain oscilla-
tions in the simulation output process. In a recent
study, Rose (1995) deals with statistical properties of
MPEG video traffic in ATM (Asynchronous Transfer
Mode) networks. He shows that MPEG video traf-
fic may have significant long term correlations that
could cause several problems in ATM networks.

3 POWER DENSITY SPECTRUM

Correlations and periodicities in simulation output
data can be determined efficiently by means of the
power density spectrum which is also known as the
power spectrum, see Oppenheim and Schafer (1989)
and Fishman (1978). We briefly describe the idea
behind this approach according to Oppenheim and
Schafer (1989) and Schlittgen (1987).

Let X = (zp,...,zn—1) a finite sequence ob-
tained by sampling a strictly stationary continuous-
time stochastic process X (t). Assuming that this se-
quence can be represented by a number of harmonic
oscillations with specific frequencies then the ques-
tion is how does the oscillation with frequency w con-
tribute to the entire time sequence as described by
Schlittgen (1987). The intensity of this contribution
is given by the power density spectrum.

There are two different approaches to estimate
the power density spectrum, both make use of the
discrete Fourier transformation. First, the discrete
Fourier transformation can directly be applied to the
finite sequence .Y. In the literature, this approach
is referred to as periodogram analysis. Alternatively,
one may first estimate the autocorrelation of the fi-
nite sequence .Y and then take the discrete Fourier
transform of this estimate. The objective of both ap-
proaches is to obtain unbiased consistent estimators
of the power spectrum. However, it is very difficult
to achieve this goal such that we have to restrict our-
selves to approximations, cf. Oppenheim and Schafer
(1989).

Now, if X (w;) denotes the discrete Fourier trans-
form of X with wy = 27k/N, k=0,...,N -1, i.e.

N-—-1
N(wy) = Z T, - MR
n=0

then samples of the power spectrum I(wy) are defined
by

Iwk) = N71- X (wi)®
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We also refer to this estimate of the power spectrum
as the periodogram since sequence .\ is obtained from
a sequence of infinite length by simply cutting out N
subsequent samples out of Y. In the literature, this
technique is called windowing by a rectangular win-
dow.

As mentioned above, the periodogram can alter-
natively be calculated by taking the discrete Fourier
transform of the estimate of the autocorrelation of
the sequence .\ denoted by c(l). It is

N-1
cl) = Z Tn - Tntls
n=0

where [ denotes the lag between two samples of .\,

l{| £ N—1. Then, the estimate of the power spectrum
is

N-1

Iwy) = N7y

I=—(N-1)

c(l) - ert,

Note that since the periodogram is an odd func-
tion (i.e., I(w) = I(—w) for any arbitrary w) and since
the periodogram has period 1 (i.e., I{w+1) = I(w) for
any arbitrary w) it is sufficient to show periodograms
only for w € [0; 7], cf. Schlittgen (1987).

The approximation of the estimate of the power
spectrum can be improved by periodogram averag-
ing following Oppenheim and Schafer (1989): The
original sequence is divided into K batches of length
N/K each. Then, the average periodogram is ob-
tained by averaging the K periodogram estimates
L(w),r=1,...,K,ie.:

K
Iw)y = K> IL(w).
r=1
Periodogram averaging yields an asymptotically unbi-
ased consistent estimate of the power spectrum when
the length of the sequence X tends to infinity so that
N and K are allowed to increase.

We conclude this brief introduction by remark-
ing that the discrete Fourier transform can efficiently
be computed by using Fast Fourier Transform tech-
niques (FFT), especially if the length of the sample
sequence is a power of 2. Otherwise, we augment the
sequence by zeros until the corresponding length is
achieved. Finally, we refer the interested reader to
the original literature for further details.

4 SIMULATION MODEL

We examine several production environments by
means of simulation. These environments are intro-
duced briefly.

4.1 M/M/1 - 0o Queue with Bernoulli Feed-
back

We consider this simple model since one might expect
that rework causes correlations in the sequence of suc-
cessive cycle times. At this queue customers arrive
according to a Poisson process with rate A whereas
service times of the single server are exponentially
distributed with mean p~!. In this model rework
is incorporated via the feedback probability p. Af-
ter service time completion customers are fed back to
the tail of the queue with probability p. Since for an
arbitrary customer this probability is independent of
its history, i.e. independent of the number of feed-
backs that customer already experienced, this kind
of feedback is called Bernoulli feedback, see for ex-
ample van den Berg and Boxma (1987). Taking into
account the feedback probability p it can be shown
that the load of this queueing system is given by
p=M[u(l-p)

We examined this model for a rework probabil-
ity of 30% and adjusted the arrival and service rates
in a way such that a load of p = 0.3 was obtained.
Further, we stopped the simulation after 25,000 cus-
tomers have left the system and assumed that the
initial transient period was finished after 5,000 cus-
tomers.

4.2 Wein’s Semiconductor Fab

Here we use the model of a wafer manufacturing fa-
cility given by Wein (1988). We only sketch the ma-
jor properties and parameters of this model and refer
the reader to the original literature for further de-
tails. The facility consists of 24 work centers, where
identical machines are grouped together. Lots are
processed in 172 operation steps, building up a 13-
layer structure. The machines at 21 work centers
are subject to failures, such as unscheduled break-
downs or maintenance. Two different types of proba-
bility distributions are used to model processing times
and times regarding failures. Processing times are
sampled from a Erlang-2 distribution (CV = % ~
0.707). Mean time between failures and mean down-
times are considered to be Gamma distributed with
a shape paramcter equal to 1.5 (CV = /2 = 1.414).
We apply the closed loop input mechanism (also
called CONWIP). This means, that the number of
lots in the line is held constant to a certain value by
dispatching a lot whenever a lot exits. We simulated
1,000,000 hours of operation and discarded statistical
data collected during the initial 50,000 hours.
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Table 1: SEMATECH Testbed Data Sets

Data Set | 1:Logic;  3:Logic; 5a: ASIC; 6: ASIC,
Type of Factory Cominodity Commodity ASIC ASIC
Product Mix 2 11 21 9
approx. WSPM 16,000 21,400 10,000 5,500
Avg. #Mask Layers 15 35 30 30
#Processing Steps 210 / 245 298 - 533 117 - 259 234 - 356
#Tools 83 73 85 104

4.3 MIMAC Semiconductor Fabs

We simulate factory-level data sets of four different
semiconductor fabrication facilities, including ASICs,
microprocessors, and non-volatile memory. These
datasets were developed by the MIMAC project
(MIMAC: Measurement and Improvement of MAn-
ufacturing Capacity, joint project between SEMAT-
ECH, Austin, TX, U.S.A., and the European JESSI
project). can be obtained via anonymous FTP from
SEMATECH. An overview of these data sets concern-
ing the product to be manufactured, product mix,
number of processing steps including rework, number
of wafer starts per month (WSPM), average number
of mask layers, etc is given in Table 1.

For evaluation purposes we collected the cycle
time of 40,000 lots of product 1 for the original data
set 3. Initial 10,000 lots of the same type were dis-
carded. The load of this fabrication facility was ad-
justed in a way to obtain a load of 30% at the bottle-
neck tool. The simulation study concerning the MI-
MAC data sets was conducted using the Delphi sim-
ulation tool, a package for simulating large queueing
networks, with an emphasis on providing the build-
ing blocks for manufacturing simulation, in particular
semiconductor manufacturing.

We apply the methodology of the power density
spectrum to sequences of successive cycle times ob-
tained by simulating the aforementioned manufactur-
ing facilities in statistical equilibrium. In each case
we plot the autocorrelation function and the peri-
odogram of the sequence of successive cycle times.

5 NUMERICAL RESULTS

5.1 M/M/1 — c0 Queue with Bernoulli Feed-
back

As far as the autocorrelation function is concerned
the Bernoulli feedback has no impact with increasing
lag, see Figure 1. After a steep descent the autocor-
relation function oscillates around the abscissa.

The conjecture that there are no periodicities in

the sequence of successive cycle times is confirmed by
the corresponding periodogram shown in Figure 2.
We also examined this system for varying loads and
varying feedback probabilities. The results obtained
are similar to these discussed here. This also holds
fora D/D/1 — oo system with Bernoulli feedback.
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Figure 1: Autocorrelation of Cycle Times in the

M/M /1 — oo Queue with Bernoulli Feedback
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Figure 2: Periodogram of the M/M/1 — oo Queue
with Bernoulli Feedback, K =1
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5.2 Wein’s Semiconductor Fabrication Facil-
ity

Apparently, Figure 3 shows that the autocorrela-
tion function of successive cycle times oscillates very
strong around zero. Since we apply the closed loop
rule with a WIP of 50 lots the autocorrelation is de-
creasing up to lag 50. Then it is increasing again.
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Figure 3: Autocorrelation of Cylce Times in Wein’s

Semiconductor Fabrication Facility

We conclude that due to the application of the closed
loop rule with sequencing lots in order of their arrival
(FCFS) the lot with number M is not allowed to en-
ter the production system until the lot with number
M — 50 has left. However, this strong relationship be-
comes weak with increasing lag. Nevertheless, the pe-
riodogram shows some spectrally smeared peaks (see
Figure 4).
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Figure 4: Periodogram of Wein’s Semiconductor Fab-
rication Facility, K =1

Most probably, this smearing effect is due to the fi-
nite length of the sequence of successive cycle times.
If we consider a sequence which is approximately
5 times longer than the original one, we obtain the
periodogram shown in Figure 5. In this periodogram
these peaks are narrower compared to those in Fig-
ure 4.
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Figure 5: Periodogram of Wein’s Semiconductor Fab-
rication Facility for a Longer Sequence

Now let us discuss the peaks in the context of
the corresponding sequence of successive cycle times:
The distance w* between the first 11 peaks of the
periodogram is almost the same and equal to approx-
imately 0.04n. If we calculate the period P* between
two peaks according to Fishman (1978, page 261)
by P* = 2m/w* we obtain P* ~ 50. This implies
a cyclic behaviour in the original sequence of cycle
times with a period of approximately 50 lots. Note
that the length of the period corresponds exactly to
the maximum inventory of 50 lots which is due to the
application of the closed loop rule.

As Fishman (1978, page 262) states, the remain-
ing peaks of the periodogram “are most likely har-
monics of the fundamental frequency that contribute
to the shape of the cyclic component” in cycle time.
This periodicity is amazing and from a operations
managers point of view not desirable.

Similar effects occured for several side experi-
ments using different seeds and different queuing dis-
ciplines, for instance shortest remaining processing
time (SRPT). Thus, we conclude that most likely the
periodicity in cycle times is due to the closed loop
rule which is an exogenous factor.
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5.3 MIMAC Semiconductor Fabrication Fa-
cilities

Unlike the autocorrelation function (see Figure 1) of

the Bernoulli feedback model we observe here (see

Figure 6) that the autocorrelation function for the
MIMAC data set 3 does not settle near zero.

0.8 | i

0.6

c(l)

0.4}

0.2}

(o R 8 it R E T { I AR TN

6 50 160 15 260 250 360 350 460 4éO 500
lag [

Figure 6: Autocorrelation of Cycle Times, MIMAC

Data Set 3

Like for Wein’s fabrication facility we find an oscil-
lating autocorrelation function, here within an inter-
val of [—0.1; 0.2] and with a much higher frequency.
Again we use periodograms to obtain more informa-
tion about periodic effects in the simulation output.
Figure 7 is the periodogram of the output of a single
simulation run using MIMAC data set 3. Since av-
eraged periodograms, according to Oppenheim and
Schafer (1989), show better the periodic effects by
suppressing random influence, we turn to Figsure 8
and 9. These average periodograms are derived from
independent simulation runs using different seeds.
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Figure 7: Periodogram of MIMAC Data Set 3, K = 1

In each periodogram one can easily identify
several sharp, isolated peaks. There are dom-
inant peaks at w = 0.107,0.14m,0.387,0.527,
0.677,0.747, and 0.957. Note, that the peaks at
w = 0.107,0.387,0.677,0.957 are equidistant, while
the groups of peaks at w = 0m,0.147,0.387 and at
w = 0.387,0.527,0.747 form the same pattern. We
did simulation runs using several different seeds. We
present here the diagrams of two simulation runs for
comparison purpose. In any case, we could identify
these patterns in each diagram.
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Figure 8: Average Periodogram of MIMAC Data Set
3, K=10
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Figure 9: Average Periodogram of MIMAC Data Set
3 with Different Seed, K = 10

Unfortunately, from our point of view there is no
obvious explanation for these results, since we do not
deal with an exogenous factor that itself shows some
cyclic behavior. As Fishman (1978) points out, cyclic
patterns in the simulation output data may also be
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caused by endogenous system features like batching
as in his laundry shop example. In fact, in semicon-
ductor manufacturing we have to deal with batch-
ing policies as well as rework, re-entrant job flow,
and machine breakdowns to name a few. All of these
factors were incorporated in the MIMAC simulation
model. Schruben and Cogliano (1987) showed that
the interaction of factors results in a response at the
sum and the difference of the frequencies of the single
factors. In consideration of this result we believe that
the observed patterns could be explained by the inter-
action of at least two endogenous factors. However,
further research is needed to identify these factors and
to explain the cause for the interaction.

6 CONCLUSION

We investigated the periodicity of cycle times in semi-
conductor fabrication facilities by means of the fre-
quency spectrum. The result obtained exhibit peri-
odicities which are due to either endogenous or ex-
ogenous factors. On the one hand, the limitation of
the maximum inventory of the manufacturing system
achieved by the application of the CONWIP rule rep-
resents an exogenous factor which leads to strong pe-
riodicities (as shown for Wein’s semiconductor fabri-
cation environments in Figures 4 and 5).

On the other hand, there are also some hidden
endogenous factors that contribute to the periodic-
ity of cycle times (cf. Figures 7, 8, and 9). There are
grounds for the assumption that rework, breakdowns,
and batching effects are among those. However, fur-
ther research has to be done to reveal the significance
of each single factor.
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