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ABSTRACT

We derive approximate formulas for the asymptotic
variance of estimators of the steady-state blocking
probability in a multi-server loss system. These for-
mulas can be used to predict simulation run lengths
required to obtain desired statistical precision before
the simulation has been run, which can aid in the de-
sign of simulation experiments. It is natural to delete
an initial portion of the simulation run to allow the
system to approach steady state when it starts out
empty. As the system size increases, the time to ap-
proach steady state becomes a greater portion of the
overall simulation time as system size increases.

1 INTRODUCTION

This paper is in the spirit of a previous WSC pa-
per, Whitt (1989a), and Whitt (1989b, 1992), which
focused on developing formulas that can be used to
estimate required simulation run lengths in the early
planning stages before any data have been collected.
As in Whitt (1989a,b), we focus on a class of queue-
ing models, but now we consider loss models instead
of delay models.

In particular, we consider the problem of esti-
mating steady-state blocking probabilities in a multi-
server loss system. We are interested in loss net-
works, as in Ross (1995), but here we consider only
a single link. Nevertheless, the results provide use-
ful insights for loss networks. Here we focus on the
G/GI/s/0 model, which has s servers in parallel, no
extra waiting space, and independent and identically
distributed (i.i.d.) service times that are indepen-
dent of a general stationary arrival process (i.e., with
stationary increments). Arrivals that find all servers
busy are lost (blocked) without affecting future ar-
rivals.

We assume that the data are collected after the
system has reached steady state. Hence, there is an
initial period where the system is approaching steady
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state, over which no data are collected, and then a
second period where we assume that the system is
approximately in steady state, over which all relevant
data are collected. We first consider the problem of
predicting the required simulation run length assum-
ing that the system starts in steady state. Then we
consider the initial portion that needs to be deleted
when the system starts empty for the system to be
approximately in steady state.

1.1 The Candidate Estimators

The natural estimator for the steady-state blocking
probability B based on observations over the time
interval [0, ¢] is

Bn(t) = L(t)/A(t), (1)

where L(t is the number of blocked arrivals in [0, ]
and A(t) is the total number of arrivals (admitted or
blocked) in [0,t]. A closely related alternative simple
estimator, whose efficiency is easier to analyze, is

L(t) _ L(t)
EA(t) ~ M

Bs(t)

(2)

where A = EA(1) is the arrival rate. The estima-
tors By(t) and Bs(t) behave similarly, so we regard
results for Bs(t) as being applicable to By (t).

Asin Carson and Law (1980) and Glynn and Whitt
(1989), we can exploit the conservation law L = \W
(Little’s law) to obtain an alternative indirect esti-
mator for B. For this purpose, let = be the mean
service time, @ = A/ u the offered load, N(t) the num-
ber of busy servers at time t (which we assume is sta-
tionary, due to deleting an initial portion of the run)
and n = EN(t) is the steady-state mean number of
busy servers. From L = AW, we get the relation
n = A1 — B)/p. Assuming that we know X and u,
as would be the case with many simulations, we can
use the indirect estimator

Biy=1- "1
(07

3)
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where y
n(t) = t_l/ N(u)du, t>0. (4)
0

1.2 The Asymptotic Variance

Ve concentrate on predicting the variance of the basic
estimators By (t), Bs(t) and B;(t). We address this
problem by focusing on the asymptotic variance. For
any estimator B(t), its asymptotic variance is defined
as ) R

o7 = tl_lﬂnll‘ Var B(t). (5)
We use subscripts N, S and I to refer to the specific
estimators defined above. Under regularity condi-
tions (which includes the requirement that the asymp-
totic variance actually be finite). for suitably large
run times ¢, each estimator B(t) tends to be approx-
imately normally distributed with a variance &% /t,
where 67 is the asymptotic variance (which depends
on the estimator). Hence, a (1 — 3) 100% confidence
interval for B will be [B(t) — h(3), B(t) + h(3)] with
halfwidth

h(3) = =22 (6)

S

where P(—z3,, < N(0,1) < z5/5) = 1 — 3 with
N(0,1) a standard (mean 0, variance 1) normal ran-
dom variable. Thus, for specified halfwidth e and level
of precision 3. the required simulation run length is

5252
o2 (7)

t(e,3) = p

We aim to develop approximations for the asymp-
totic variances %,6% and o7. Roughly speaking, we
find that 62 ~ 4% but that 67 can be quite differ-
ent. In particular, we find that each of the estimators
Bs(t) and B;(t) has a region where it is much more
efficient. In particular, we tend to have 67 < 6%
when o > s, whereas we tend to have 67 > 6% when

a < S.

1.3 Characterizing Model Variability

One of our goals is to determine how the model vari-
ability (the variability in the arrival process and ser-
vice times) affects the asymptotic variance of the block-
ing estimators. The principal way we partially char-
acterize the variability of the arrival process is through
its normalized arrival asymptotic variance, defined by
Var A(t)
2= lim ———, (8)
Ca tlgrolo At

which we assume is well defined (the limit exits and
is finite). For the special case of a renewal process,

¢ coincides with the squared coefficient of variation

(SCV) of an interarrival time; i.e.. if { is an interar-
rival time, then

= Var (U)/(EU)? . (9)

For non-renewal processes, formula (8) captures cor-
relations hetween different interarrival times. A large
class of non-renewal arrival processes can be repre-
sented as hatch Markovian arrival processes (BN APs)
or versatile Markovian point processes. The normal-
ized arrival asymptotic variance of a BMAP is given
on p. 284 of Neuts (1989).

Since we have assumed that the service times are
Li.d. and independent of the arrival process. their
variability is easier to characterize. We primarily
characterize the service-time variability via the service-
time SCV', denoted by ¢?, and defined as in (9).

In previous studies of G/GI/s/0 loss systems it
has been found that the model variability can be
usefully characterized by focusing on the associated
G/GI/ infinite-server model, with the same arrival
process and service times. In particular, the G/GI/s/0
model variability can be partially characterized by
the peakedness parameter =, which is the ratio of the
variance to the mean number of busy servers in the
associated G/GI/oo model. -

It is often convenient and appropriate to use the
heavy-traffic (large a) approximation for the peaked-
ness with a general stationary arrival process and a
general service-time cumulative distribution function
(cdf) H(t), which is

s=1+(2 —l)u/oo[l—H(t)]zdt. (10)
0

When the service time cdf H in (10) is exponential,
z = (c? +1)/2; when H is deterministic, = = c?; see
p. 692 of Whitt (1984). Note that = = 1 in (10) for
all service-time distributions when c2 =

In summary, we partially characterize the variabil-
ity of the G/GI/s/0 model via the parameter triple
(c2,¢%,z). A principle conclusion of our analysis is
that this is indeed an appropriate partial character-
ization for the blocking probability and the asymp-
totic variance of the simulation estimators.

1.4 Scaling as System Size Grows

We are especially interested in the way the perfor-
mance of the different estimators scales as the sys-
tem size grows. Previous experience has shown that
when s grows there are three distinct regions for loss
models: light loading, normal (or critical) loading,
and heavy loading. As in Jagerman (1974), Borovkov
(1984), Whitt (1984), and other studies, the region
depends on the way the traffic intensity p = a/s
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changes as s — ~. If (1 = p)y/s or, equivalently,
(s = )/ approaches +0, a constant or —o0 as
s — o, then the region is light, normal or heavy
loading, respectively. The region of primary interest
is usually normal loading, but all three regions are
important.

1.5 Approximations for the Blocking Proba-
bilities

In order to help judge what statistical precision is

appropriate, it is useful to have rough approxima-

tions for the blocking probability itself. Asymptotics

for the GI/M/s/0 model in the case of normal load-

ing has produced the following approximation for the
blocking probability:

= s(v/VE)
BrVeleg e (1)

where ¥ = (a - 5)/Va, 2 = (2 +1)/2,and a = A/
is the offered load, while ¢(-) and ®(-) are the density
and cumulative distribution function of the standard
(mean 0, variance 1) normal distribution; see (13) of
Whitt (1984).

Approximation (11) is most strongly supported in
the case of exponential service times, but it can also
be used with general service times if we use the ap-
propriate peakedness z. The best value for > should
be the exact peakedness, but (10) is a convenient ap-
proximation.

2 WORKLOAD FACTORS

Formula (7) shows that the required simulation time
t to achieve desired statistical precision is approxi-
mately proportional to the asymptotic variance &2.
However, the computational effort required to simu-
late for time t is approximately proportional to At,
because At is the expected number of arrivals in [0, t].
(See Glynn and Whitt (1992) for a study relating
computational effort to statistical precision in simula-
tion experiments. There it is explained why it suffices
to look at the rate of expected computational effort,
X.) Hence, we give formulas for w = Aé2, which we
call the workload factor.

Our main results are approximate expressions for
the workload factors associated with the estimators
BN(t),Bg(t) and B/(t) We find that the workload
factors in the G/GI/s/0 model primarily depend upon
the parameter five-tuple (s,7v,c2, ¢, z) and, moreover,
that they can be expressed as scaled versions of func-
tions of a single real variable, which we call the canon-
ical workload factors. In particular, for the indirect
estimator, the key workload approximation formula

is
) CQ)
wi(s.y.c2.c? ) = “—QLU'/(V/\/?) , (12)
where v/ () = wr(>.v,1,1,1) is the canonical work-
lond factor associated with the M/M/s/0 special case,
v = (a — s)/\/a, = is the peakedness, c? is the nor-
malized arrival asymptotic variance in (8) and ¢? is
the SCV of the service-time distribution, defined as
in (9). Note that the arrival-process variability enters
in via both % and z, and that the service-time distri-
hution enters in via both ¢ and z. As with (11). the
preferred peakedness = is the exact value, but (10)
usually is a satisfactory approximation.
The approximation we propose for the workload
factor of the simple estimator has the same form;

just replace the two [ subscripts in (12) by S. Since

BN(t) ~ Bs(t), we propose approximating wy by
ws.

It is significant that the asymptotic variance and.
thus, the canonical workload factors for the M/M/s
model can readily be computed using p. 288 of Whitt
(1992) and p. 89 of Riordan (1962). The notion of
a canonical workload curve for M/M/s/0 models is
supported by Figures 1 and 2, which display the ex-
act workload factors w(s,v,1,1,1) for the estimators
Bs(t) and B;(t) in the M/M/s/0 model for different
values of s, assuming that u = 1. These workload
factors are plotted in log scale to emphasize signifi-
cant differences. Note that the workload curves for
different s in each figure essentially fall on top of each
other when the scaled arrival rate y = (o — s)/Va is
not too far from 0 (e.g., =2 < 5 < 2) or s is suffi-
ciently large (e.g., s > 200). Hence. a workload curve
for one value of s can serve as a workload curve for
all values of s (not too small) for that estimator.

Note that ¥ ;(v) is small for v > 0 while ¥'s(v)
is small for v < 0, showing that different estimators
should be strongly preferred in different regions.

For loss systems in normal loading, a reasonable
rough approximation for all the workload factors is 1.
Thas implies that stmulation run lengths should be ap-
prozimately inversely proportional to the arrival rate
or the system size. Clearly, larger s means that more
arrivals have to be generated, but these additional ar-
rivals evidently help with the statistical precision, so
that the asymptotic variance is inversely proportional
to A as s (and thus A) get large.

3 A DIFFUSION LIMIT

We also provide theoretical support for the work-
load factor approximation in (12). In particular, we
present a heavy-traffic functional central limit the-
orem (FCLT) in the case for the G/M/s/0 model.
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Figure 1: Workload factors ws = Aé% for the sim-
ple estimator Bs(t) in the M/M/s/0 loss model as a
function of the scaled arrival rate y = (s — a)//a for
several values of s.

which we prove elsewhere. Let = denote convergence
in distribution and let D[0, co) be the function space
of right-continuous real-valued functions on the inter-
val [0, 00) with limits from the left, endowed with the
usual Skorohod topology; e.g., see Billingsley (1968).
The convergence in D[0, >0) is useful for us to treat
general stationary arrival processes and to get con-
vergence of the bivariate distributions of the content
process, which is needed for the covariances appearing
in the asymptotic variance. To emphasize the depen-
dence on s, we write N (t) for the process counting
the number of busy servers at time ¢t. We assume that
we start with a fixed arrival process A(t) with rate 1
and scale it as we increase X by setting Ax(t) = A(At).

Theorem 3.1. Consider the G/M/s/0 model with
arrival process Ax(t) = A(\t) having rate A and fized
ezponential service-time distribution with mean pt
Let A — o0 and s — oo with (a — s)/Va — v. If
(Ny(0) = s)//a =y inR as s — 0o, where y <0
is deterministic and (A(X) — A)/\/Ac2 = Z() in
D[0,00) as A — oo, where Z is a standard (mean 0,

Indirect Estimator
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Figure 2: Workload factors w; = A\g% for the indi-
rect estimator B;(t) in the M/M/s/0 loss model as’a
function of the scaled arrival rate v = (s — )/ \/a for
several values of s.

variance 1) Brownian motion, then

Ns() =S .
D Yr : 3 - ’
NG = Y:(-) in D[0,00) as s — (13)
where Y, is a reflected Ornstein- Uhlenbeck (ROU) dif-
fusion process with infinitesimal mean m(z) = —u(z—

v), infinitesimal variance 0%(x) = p(1+c?), reflecting
barrier above at 0 and initial position Y, (0) = y.
Theorem 3.1 is similar to Theorem 2 on p. 177 of
Borovkov (1984); it draws the same conclusions, but
the conditions are different. The conditions in Theo-
rem 3.1 here parallel the conditions in Theorem 1 on
p. 103 of Borovkov (1984) for the G/GI/oo model.
The ROU limit in (13) depends on three param-
eters — p,y and ¢2 — but because of the possibility
of scaling we can reduce the relevant parameters to
only one. First, without loss of generality, we can
obviously make the service rate u = 1. Then let
: = (c2+1)/2 and note that Theorem 3.1 implies that
(Ns() = s)/za = (1/\/z)Y.(-), where (1//2)Y; is
an ROU with infinitesimal mean —(z —~v//z) and in-
finitesimal variance 2. Hence, if we let Y, (t;m(z).0?)
denote the ROU as a function of its infinitesimal pa-
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rameters, then

a(l + (i)
——

V() Yo(s=(r=9V2/(1+2), 2).

(14)
Thus the asymptotic variance 6; of N,(t) is approx-
imately

Lo (142 .

"

0l o~ a— 257 2) . (19)
T R Vels=(r=y/2/(14c2)

Only the single parameter y./2/(1 4 ¢2) appears in-
side the ROU Y7 in (14) and thus inside the asymp-
totic variance term rrf in (15). The asymptotic vari-
ance term df.r(,;_(r__,,)‘g) remains to be calculated,
but it clearly is a function of only the one parameter.
Combining (3) and Theorem 3.1, we obtain con-
vergence of the bivariate distributions for any two
time points. Assuming that we can approximate the
covariance function of the queueing process by the
covariance function of the ROU, we obtain

2 , 1+ AP
AGT(GI/M[s/0) = T 0y (e BT )
(16)
Theorem 3.1 suggests that we should look at the
workload factors as functions of v for (o — s)//a =
v. When we do, we find canonical curves for all the

workload factors.

4 OTHER APPROXIMATIONS

We also develop other approximations based on asymp-
totics as s — oo with p held fixed, with either p < 1
(light loading) or p > 1 (heavy loading), derived else-
where. These approximations are shown in Table 1.
These formulas show that the workload factors w;
and wg behave differently: w;/ws — o0 as s — oo for
p < 1, while w;/wg — 0 as s — oo for p > 1. More-
over, these formulas also serve as simple approxima-
tions. Since we already have reduced the G/GI/s/0
case to the M/M/s/0 case in (12), we primarily use
the formulas in Table 1 as convenient simple approx-
imations for the canonical (M/M/s/0) workload fac-
tors 1 (obtained by letting ¢2 = 1 in Table 1).

With the exception of the light-loading simple-
estimator formula, the formulas in Table 1 are all in
terms of the three variables s,y and c2. (Given s,
7y is equivalent to p or a.) The light-loading simple-
estimator formula can be put in the same form by
exploiting (11), which yields

(1-+—c§)3/2

ws(s,v,c2) = iy e~ /(1+e0) i light loading .

(17)

light loading | heavy loading
p<l1 p>1
simple and
1+¢? .
natural | B <—“> 2+ p7!
l-p
estimators
indirect
. 1+ p)(1+c?)3
estimator 1+¢2 (_p_)(_a)
4s2(p —1)*

Table 1. Approximation formulas for the workload
factor w = Ag? of the estimators in (1), (2) and (3)
for the G/M/s/0 model in light. normal and heavy
loading.

(Let w(s,7,c2) = w(s,y,c2,1,(c2 +1)/2).) Formula
(17) approximately satisfies the general functional form
(12) with

vs(y) =277 e(y) = V2 myRe Y 2 L (18)

Similarly, the heavy-traffic indirect-estimator work-
load factor approximation in Table 1 can be expressed
approximately as

(1+c2)3
wz(SmCﬁ)z—‘,p‘M) : (19)
<P

which is approximately of the form (12) with
vr(y) =470 (20)

All four formulas in Table 1 are consistent with (12)
in the limit as s — oo with (a — s)/\/a — v (so that
p—1).

Approximations (17)-(20) reveal the essential form
of the workload factors in light and heavy loading,
but these formulas are not very accurate, e.g., when
compared to the exact M/M/s/0 results.

5 SIMULATION EVIDENCE

A key point underlying all our work is the fact that
the actual variance of each estimate B(t) is reason-
ably well described by 62/t, where 42 is the asymp-
totic variance, when t is suitably large. This large
sample behavior is well established in statistical ex-
perience, but we also have confirmed this directly. We
give two examples here.

Example 5.1. More Variable Arrival Processes.
To see how the approximations perform for G/M/s/0
models with arrival processes more variable than Pois-
son, we conduct a simulation experiment for the

GI/M/s/0 model, where the interarrival time has a
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hyperexponential distribution with balanced me:ins
and ¢ = 9.0. This H? distribution has density

fl)y=phe™ 7+ (1=p)hae™ 7 o >0 (21)

where

p=[1+ V(2 -1/ +1)/2, (22)
A =2pA~ and Ay = 2(1 — p)A-! (23)

with A™! being the mean. Since the service-time dis-
tribution 1s exponential, the approximate peakedness
by (10) is = = (¢7 +1)/2 = 5. (The exact peakedness
is 4.95, 50 (10) is an excellent approximation.)

We consider s = 400, ¢ = 1 and three values of
A A =360, \ = 400 and A = 440. The experi-
ment consists of 2 independent runs of length 2700
for each A, deleting a portion of length 5 to allow the
system to approach steady state in each case. (The
run length 2700 makes the expected total number of
arrivals about 10° in each case.) The variances were
estimated from 20 nonoverlapping batch means. The
simulation results are displayed in Table 2. The pre-
dictions in Table 2 based on (11) and (12) seem very
good. Table 2 shows that B’N(t) essentially coincides
with Bs(t).

A =360 predicted | run 1 | run 2
blocking S | .036 .0309 | .0306
probability .V | .036 .0308 | .0306
estimate I .036 .0303 .0334
standard S .0014 .0011 .0012
deviation N | 0014 .0011 .0011
estimate I | .0020 0020 | .0017
A =400 predicted | run 1 | run 2
blocking S | .089 0811 .0854
probability .V | .089 .0813 | .0849
estimate 1 .089 .0833 .0804
standard S | .0020 .0014 | .0015
deviation N | .0020 .0013 | .0013
estimate I | .0012 .0015 .0011
A =440 predicted | run 1 | run 2
blocking S | .150 1397 | .1430
probability N | .150 .1400 | .1428
estimate I .150 .1431 1417
standard S | .0023 .0027 .0020
deviation N | .0023 .0023 .0017
estimate I | .00075 .00082 | .00075

Table 2. A comparison of predictions with simulation
results for the GI/M/s/0 model with s = 400, H3
interarrival times having ¢2 = 9.0 and service rate
© =1 in Example 5.1.

Example 5.2. The M/G/s/0 Model. For the
M/G/s/0 model, it is well known that the blocking
probability depends on the service-time distribution
only through its mean. This insensitivity property
15 reflected by formulas (10) and (11), because then
2 =z = 1. However, the asymptotic variance and
workload factors do not have this insensitivity prop-
erty, as is clear from the influence of ¢ in formula
(12).

To illustrate how approximation (12) applies to
M/G/s/0 systems, we consider an M/G/s/0 system
with s = 400, p = 1 and an H} service-time distri-
bution with ¢; = 9.0. Simulation results for 2 inde-
pendent runs of length 2700 are displayed in Table 3.
Because of the more variable service times, we delete
a period of length 50 in each run. (See (29) below.)
Note that the blocking probabilities are well predicted
by formula (11) with = = 1. The standard deviation
estimates are also reasonably well predicted by (12)
as well. Notice that the prefactor (¢> + ¢?)/2 = 5 in
(12) plays an important role here.

A =380 predicted | run 1 run 2
blocking S | .0143 0151 .0135
probability N | .0143 .0151 .0135
estimate I | .0143 .0137 .0165
standard S | .0013 .00146 | .00128
deviation N | .0013 .00146 | .00128
estimate I | .0021 .00221 | .00221
A =400 predicted | run 1 | run 2
blocking S | .0399 .0389 | .036
probability N | .0399 .0390 | .036
estimate I | .0399 0393 | .040
standard S | .0020 .00144 | .00177
deviation N | .0020 .00143 | .00176
estimate I .0012 .00151 | .00143
A =420 predicted | run 1 run 2
blocking S | .073 0729 | 0727
probability N | .073 0729 | .0726
estimate I | .073 .0722 0724
standard S | .0022 .00193 | .00143
deviation N | .0022 .00191 | .00144
estimate I | 00072 .00084 | .00074

Table 3. A comparison of predictions with simulation
results for the M/G/s/0 model with s = 400, service
times having ¢? = 9 and 4 = 1 in Example 5.2.

6 THE INITIAL CONDITIONS

Since we cannot start the simulation in steady-state,
the estimators necessarily have initialization bias, i.e.,
the expected value is not exactly B. The bias of esti-
mator B(t) is EB(t) — B. The bias can be kept small
by choosing a good initial state and/or not collecting
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datacover aninitial portion of the simulation to allow
the system to approach steady state

First, we can approximate the bias at time t by
using the asymptotic bins, which is defined by

4= lim t(EB(l) = B) . (24)

We use (24) to justify the approximation EB(t)— B =~
3/t. Since SD(B(f)) ~ a/\/t. the bias tends to be
negligible compared to the random fuctuations for
sufficiently large t. However, in practice it can be
worthwhile to reduce the bias.

Just as with the asvmptotic variance, for func-
tions of Markov chains the asymptotic bias for any
initial distribution can be calculated by solving Pois-
son's equation; see (32) and Corollary 4 to Propo-
sition 10 of Whitt (1992). Hence, we can numeri-
cally investigate the M/M/s/0 model and more com-
plicated Markov loss models. For example, Table 4
displays the asymptotic bias for the indirect and time-
congestion estimators in the M/M/s/0 model with
s = 400, p = 1 and several values of p, starting
empty or full. computed in this manner. For A = 380
and simulation run of length 5400, indirect estimator
starting empty is 0.94/5400 = 0.00017. The bias is
of the same order as the approximate standard devi-
ation 0.00066. Thus some effort to reduce the bias
evidently can be worthwhile.

p | N(0)=0] N(O) = s
07 | 1.00 ~0.42
0.8 | 1.00 ~0.24
0.9 | 0.99 ~0.086
1.0 | 085 ~0.0123
1.1 | 066 ~0.0019
12 | 052 ~0.0005

Table 4. The asymptotic bias for the indirect estima-
tor in the M/M/s/0 model as a function of the traffic
intensity p with s = 400, starting empty or full.

Insight into appropriate procedures for addressing
the initialization bias can be gained by considering
the associated infinite-server models. In the G/GI/~
model starting empty, the bias of the estimator 7(t)
is rractly

En(t) —n=-nH(t), (25)

where H,(t) is the service-time stationary-excess cdf,
1e.,
Hi(t)=1-H.(t) = u/ He(u)du  (26)
t
where H¢(t) = 1— H(t); see (20) of Eick, Massey and

Whitt (1993). (The M/GI/oo result there remains
true for G arrival processes; see Remark 2.3 of Massey

and Whitt (1993).) Hence, the asymptotic bias of
n(t) is

By = —n(c2 +1)/2u . (27)
As a consequence, in light loading the approximate
bias of the indirect estimator is

PR C LA (28)
10 21

In the case of M service with p = 1, formula (28) im-
plies that ;J; = 1, which is substantiated by Table 4.

Recall that the asymptotic variance 67 tends to
be inversely proportional to \. In contrast, formula
(28) implies that the asymptotic bias tends to be in-
dependent of A\. Hence, the bias becomes relatively
more important as system size grows.

Formulas (25) and (28) can be used to estimate
the remaining bias if we eliminate an initial portion
of the run of length to. Let 3;(to) be this remaining
bias. Then

Bitto) = [ Heludu (29)
tll
For example, with A service with u =1,

Bi(to) =/ e Mdu = et . (30)
to
Since e~? = 0.135and e~® = .0067, the time-dependent
mean reaches 86% and 99.3' of its steady-state value
by 2 and 5 mean service times, respectively, and a cor-
responding part of the bias is reduced by eliminating
the initial portion.

The infinite-server analysis is roughly consistent
with asymptotical results as s — o~ for the tran-
sient blocking probability in the M/M/s/0 model by
Mitra and Weiss (1989). Roughly speaking, these re-
sults imply that the blocking probability at time ¢ has
reached about 90% of its steady-state value approxi-
mately at time

24+ 1log(s(l—p)) p<1
t={ 2+=log(s/2) p=1 (31)
log(p/(p=1))  p>1

For s = 10° and p = 1, the time is ¢t = 5.1, which
1s about the same as the infinite-server result. This
analysis suggests that the initial portion to delete is
a period lasting about 5 mean service times, with
the amount perhaps increasing very slowly with s. A
heuristic for more variable arrival processes based on
(29) for H® service times is to delete 5c2 mean service
times.

For large systems, this means that most of the
work can be in getting to steady state. For exam-
ple, when s = 104, the required run length in steady
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state can be about 1, while the required run length
to reduce bias starting emptyv can be about 5. For
such large systems, it clearly can be much better to
initialize the system closer to the steady-state mean.
To illustrate, we simulated several GI/M/s/0 systems
with s = 10 and g = 1. We let the total run length
be 1. Of course, when we start the system empty, no
blocking at all is observed. When we start the sys-
tem with 9980 customers and do not delete an initial
portion, the statistical precision is adequate.

Unfortunately, these good results for non-empty
initial conditions fail to hold if we change the service-
time distribution. The difficulty is that all customers
in service at time 0 would actually not be starting
their service times at that time. For a simple ex-
ample, consider the G/D/s/0 model with 4 =1 and
total run length t = 1. None of the customers initially
in the system would leave prior to time 1 if they all
began service at time 0. There is no difficulty with
exponential service times, because the remaining ser-
vice time is again exponential.
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