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ABSTRACT

This paper investigates the use of an effective pseudo-
random number assignment strategy, which we call
maximum-blocks strategy, for simulation experiments
involving the estimation of quadratic response surface
metamodel in 3* factorial designs. The maximum-
blocks strategy i1s shown to perform better than
well-known existing quadratic-metamodel assignment
strategies, such as the IR, CR, and modified-AR
strategies.

1 INTRODUCTION

Simulation models are often used to make decisions
on alternative system designs. A second-level model
of a simulation model, referred to as a metamodel,
can be used to explore the functional relationship be-
tween the mean response of the simulation model and
a sct of simulation inputs (design variables). The sim-
ulation input-output functional relationship is often
represented as Y = f(X) + ¢, where Y is a vector
value of simulation outputs, f is the chosen func-
tional form, X is the design matrix for simulation
experiments, and ¢ 1s the simulation random error
affected by the assignment of pseudo-random num-
ber strcams. Our work focuses primarily on the issue
of modeling e. That 1s, how do we best assign the
pseudo-random number streams for simulation exper-
iments to increase the precision of the estimation of
the metamodel? In this paper we focus our discussion
on a quadratic metamodel for f and on a 3% facto-
rial (3%¥-FAC!) design for X. A thorough discussion of
choosing a functional form for f is given by Barton
(1992).

Because of the simplicity and the utility of meta-
models, estimation of metamodels has become an im-
portant research topic. Several strategies have been
proposed to increase the precision of estimation by
inducing a desired correlation structurc among the
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responses. These strategies are called correlation-
induction strategies or pseudo-random number as-
signment sirategies. No matter which correlation-
induction strategy is used, Schruben (1979) showed
that the sum of variances of the independent es-
timable parameters is constant for designs in which
X is saturated (nonsingular and square) and orthog-
onal. Therefore, such strategies are also called var:-
ance swapping techniques because the variances are
not reduced but swapped (or shifted) from more 1m-
portant estimators to less important estimators.

To our knowledge, an optimal assignment strategy
for linear metamodels in 2¥ fractional design has pre-
viously been proposed (see Schruben and Margolin
1978, Hussey, Myers, and Houck 1987a, Song and
Su 1995a, and Song and Su 1995b), but an opti-
mal assignment strategy for quadratic metamodels
has not. In this paper, we continue to pursue an
optimal assignment strategy for the estimation of a
quadratic metamodel in 3¥F-FAC designs. The strat-
egy we investigate here is called the mazimum-blocks
strategy. This strategy is based on the same underly-
ing principle as the multiple-blocks strategy proposed
by Hussey, Myers, and Houck (1987a), but has been
combined with other variance reduction techniques
so as to treat the quadratic metamodels. We show
empirically that the maximum-blocks strategy is su-
perior to the IR, CR, and modified-AR strategies for
various input variables. More empirical results illus-
trating the efficiency of maximum-blocks strategy for
quadratic metamodels, but not being restricted to 3*-
FAC design, can be seen in Song and Su (1994).

2 PROBLEM FORMULATION

2.1 Quadratic Metamodels in Three-Level De-
signs

Consider a 3* factorial design (see Montgomery 1991
for details) for the simulation experiment. That is,
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the simulation experiment consists of n cxperimen-
tal points, each of which specilies the combinations
of k input design variables, cach with three levels
(n = 3¥). Without loss of gencrality, the three lev-
els of design variables can he specified as +1, 0,
and —1, respectively. During each run of simula-
tion experiments, we record the discrete time series,
say {Yi;0 = 1,2,...,n,t = 1,2,...,T}, where Y;,
denotes observed output at time ( for experimental
point ¢, n is the number of runs, and T is the length of
the time series recorded. Let Y'(*) denote the sample
response statistic of experimental point i (often the
average, 77! zle ¥i: ). Our metamodel assumes a
relation between the response statistic Y*) and the
corresponding design variables at experimental point
i, denoted by r, = (r;1, 2. ..., x;%), of the form
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where 3;;, j = 1,2,...,k is the j*P quadratic coef-
ficient. For convenience, we express Equation (1) in
matrix form,

Y=Xp+e, (2)

where the response vector is Y = (Y1) . . Y("))t
the vector of the metamodel coefficients of interest
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A design suitable for separately estimating the
142k +k(k—1)/2 coefficients in Equation (2) is called
a second-order (response surface) dcsign. The 3* fac-
torial (3¥-FAC) design, which is investigated in this
paper, is one commonly used second-order design.
Other commonly used second-order designs include
the central composite (CC) design (Box and Wilson

1951), Box-Behnken (BB) design (Box and Behnken
1960), and small composite design (Draper 1985). For
more references, see Montgomery and Evans (1975),
Lucas (1976), Donohue, Houck, and Myers (1992),
and Hussey, Myers, and Houck (1987b).

2.2 The “Min-V|Min-B” Strategy

A natural estimator of 4 in Equation (2) is the ordi-

nary least squares (OLS) estimator,

B=(X'X)"'X'Y,
each element of which is a linear combination of the
responses Y1) Y2y Here the quality of the
estimator is usually measured by the associated dis-
persion matrix,

T = (XX) T X! By X(X'X) 7,
where Xy denotes the dispersion matrix of Y. For
example, the D-optimal (the determinant of 2/9) and

the A-optimal (the trace of Eﬁ) are usually selected

as the design criteria for comparing the precision of
metamodel coefficients. The assumption behind the
use of these design criteria (which are based on Eﬁ) is

that the hypothesized metamodel in (2) models the
input-output relationship exactly. That is, bias is
not an issue in estimating 3. Rather than construct
designs based on the premise that there is no bias
effect, Box and Draper (1959, 1963) assumed the ex-
istence of unfitted third-order terms and incorporated
the bias effect into a performance measure

5 _ "o B{y(z) - Bly(x))}*de
Jadz '

which is the average mse of the response over a re-
gion of interest. For example, a spherical region € is
defined as {z|z? + 23+ -+ 2 <1}

The performance measure J can be written as the
sum of two components:

J=B+V,

where B denotes the squared bias component of the
average and V (= n tr[X;M]) denotes the variance

component of the average, where M is called the re-
gion moment matrix, which contains known constant
entries (see Box and Draper 1963 for a discussion of
B, V, and M).

Instead of pursuing a J-optimal strategy, Donohue,
Houck, and Myers (1992) used V|Min-B as a crite-
rion to pursue a Min-V|Min-B strategy. The Min-
V|Min-B strategy is carried out by determining (1)
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the optimal values of scaling factors, which are the
level values of designs, (2) the optimal number of ad-
ditional center points, which indicates the number of
replications of the center points, and (3) the optimal
pseudo-random number assignment strategy. (We do
not need to concern the second issue here sinee there
is no center point for 3¥-FAC! design; however cen-
ter points are required for other sccond-order designs,
such as BB and C'C! designs.) Donoliue, Houck, and
Myers (1992) derived the optimal scaling factors to
meet the Min-B criterion, which is a necessary con-
dition for a Min-V|Min-B strategy. In this paper, we
also use V|Min-B as our performance criterion, and
we usc the optimal scaling factor for a 3¥-FA(! design.
Our attention is therefore focused on developing the
optimal assignment strategy in the sense that V is
minimized.

2.3 Assumptions

The assignment strategy 1s based on controlling
the pseudo-random number stream sets that drive
the simulation model. For a simulation system con-
taining ¢ stochastic components, a set of g in-
dependent pseudo-random number streams, R =
(R1,Ro,..., Ry) is required to drive the simulation
model for a specified design point. The i*M stream
of pseudo-random numbers R; can be composed as
(ry,7a,...), where r;’s are independent uniform vari-
ates over the interval (0,1). Each of the g streams
drives one of the g stochastic components in the simu-
lation system. Let us review four major assumptions
concerning stream sets (see Schruben and Margolin
1978 for details):

Assumption 1: All sample response statistics have
cqual variances. Here, for mathematical conve-
nience, without loss of generality, we assume the
common variance of the error terms 1s unity, 1.e
var(Y1)) = var(y*)) = - .. = var(Y'"™)) = 1.

Assumption 2: Utilization of the same stream set
for any two distinct cxperimental points re-
sults in the same positive correlation, l.e.,
corr(YO(R), YUNR)) = py, 0 < py < 1, for
all © # 7.

Assumption 3: Let R; = (r1,72,73,...) be stream ¢
of the stream set R.. Its antithesis is then defined
as Ri=(1—r;,1=75,1—74,...) and the antithetic
stream set is defined as R = (Ry, Ry, ..., Ry).
Utilization of a pair of antithetic stream sets, R
and R, for any two distinct experimental points
results in the same negative correlation, 1i.c.,

corr(Y O(R),YU)(R)) =
for all 7 # j.

—P-> O<p— < 1’

Assumption 4: Utilization of distinct randomly se-
lected stream sets, R, and R, results in a zero
correlation, i.e., corr(Y(R;), YU)(Ra2)) = 0,
for all ¢, j.

Furthermore, we must assume that p_ < p; to ensure
that Xy is positive definite.

Under the above assumptions, Schruben and Mar-
golin (1978) showed that there are p, feasible sign
patterns for Xy and therefore p, possible assignment
strategies, where

Pn:Z:Qn ]Z( 1)]—1 -n.

V(7 —
e i (j =)

Theoretically, the optimal assignment strategy can be
identified by means of an exhaustive search over the
Pn possible associates Xy . In practice, however, we
are not able to check all possible strategies because
of the vast size of p,. For an experiment design with
only 10 design points, for example, there are over 5
million possible assignment strategies. Moreover, in
each assignment strategy, we can generate an infinite
number of further cases, each of which corresponds to
a different magnitude of the induced correlation, p4
and p_.

The maximum-blocks strategy investigated in this
paper 1s a systematic procedure for assigning the
stream sets for each design point. The examination of

other “well-behaved” strategies is given in Song and
Su (1994).

3 THE MAXIMUM-BLOCKS STRATEGY

3.1 Basic Principle

The maximum-blocks strategies for 3*-FAC designs
are based on the following two principles:

Blocking Principle: All design points are partitioned
into as many orthogonal blocks as possible, with
the stipulation that the estimation of the meta-
model coefficients must not be confounded with
these blocks.

Assignment Principle:
— Inside a block: A common stream set is used
for design points in the same block.
- Between the blocks: Arbitrarily group all
blocks into pairs. A pair of antithetic stream sets
is used for the two blocks in each pair and inde-
pendent stream sets are used for different pairs.
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The blocking principle is consistent with the tradi-
tional blocking theory: “Block what you can and ran-
domize what you cannot” (Box, Hunter, and lunter
1978, p. 101). The principle for assignment. inside
a block is also consistent with local control in the
blocking theory: *“The environment inside a block
should be as homogeneous as possible.” To illustrate
the principle for assignment between blocks, Song and
Su (1994) has performed an exhaustive search of all
possible strategies that use the blocking principle and
the principle for assignment inside a block.

3.2 Procedure for the MB Design for 3*-FAC
Design

The 3*-FAC designs are a class of traditional second-
order designs. A discussion of the 3*-FAC can be
found in many textbooks on experimental design,
such as Montgomery (1991). The maximum-blocks
strategy for the 3¥-FAC design is as follows.

Step 1. The maximum possible number of indepen-
dent defining contrasts, say s, is chosen to con-
struct blocks for the 3* factorial points such that
the metamodel coefficients {g;}5_,, {5;;}5,,
and {J,J}f-‘;éj are not confounded with the block
effect. (A systematic procedure proposed by
Franklin 1985 can be used to find the desired
defining contrasts.) The defining contrasts are
then used to divide the design points into 3P
blocks, each containing 3*~P points.

Step 2. The 37 blocks constructed in Step 1 are
grouped into pairs arbitrarily. Thus (37 — 1)/2
groups are specified.

Step 3. Here (37 4+1)/2 independent stream sets, say
(R] y R'_;, Cey R(gp_l)/'_;, R(3p+1)/g), are required.
The stream set R, is assigned to the design
points in one block of the i pair and R; is as-
signed to the design points in the other block of
the same pair. Note that there is one unpaired
block; the stream set Rysrt1)/2 is used for the
design points in the unpaired block.

4 PERFORMANCE

In this section, we compare the performance of four
strategies: the IR, CR, modified-AR, and multiple-
blocks strategies. The second-order designs investi-
gated are: 3*¥-FAC! designs with k£ = 3,4,5,6, where
a 1/3 fractional design is used for £ = 6.

Table 1 shows the V component for the four strate-
gies for 3*-FAC designs. The maximum-blocks strat-
egy has the lowest V component and the CR strat-
egy has the highest. The modified-AR strategy has
a lower V component than IR for k& = 3; however,
the modified-AR has a higher V component than IR
if py/p_ > 18/5 for k = 4, if py /p_ > 54/53.07 for
k=5,0rifpy/p_ > 54/43.58 for k = 6. We conclude
that for all cases studied here, the maximum-blocks
strategy is the most effective of the four strategies.
The comparison of the maximum-blocks strategy to
other second-order designs, such as Box-Behnken de-
sign and central composite designs can be seen in
Song and Su (1994).

5 SUMMARY

This paper has investigated the use of the maximum-
blocks strategy for estimating the second-order
metamodels in 3%*-FAC designs. We have shown
that the maximum-blocks strategy outperforms well-
known existing strategies, including the IR, CR, and
modified-AR strategies.

We can summarize the idea behind the maximum-
blocks strategy as follows. First, all design points
are partitioned into as many orthogonal blocks as
possible such that no metamodel coefficients are con-
founded. These blocks are then arbitrarily grouped
into pairs, each of which contains two blocks. Finally,
we assign a common stream set to the design points
in the same block, antithetic stream sets to the two
blocks in the same pair, and independent stream sets
to blocks in different pairs or to an unpaired block if
there is one.

The application of the maximum-blocks strategy
is not restricted to the 3* factorial design. It also
performs well for the Box-Behnken design and central
composite designs (see Song and Su 1994). It deserves
future investigation on how well the maximum-block
strategy can be applied in a real world example or
a system with a known analytic solution, such as a
queueing system.
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Table 1: V Component for 3*-FAC Designs

Strategy k=3 k=4 k=5 k=6 (1/3 fraction)
IR 1258 195 27.93 37.15
CR 12.58 4 14.42p, 195+ 61.5p, 27.93 4 215.07p4 37.15 4 205.85p,
Modified-AR 12.58 — 2.39p4 — 6p_ 1954 5p4 — 18p_ | 27.93453.07p4 — 54.00p_ | 37.15 + 43.85p4 — 54.00p_
Maximum-Blocks | 12.58-3.59p, —6p_ | 195-105p; —8p_ | 27.93-15.36p; — 682p_ | 37.15-20.72p; — 4.82p_
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