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ABSTRACT

This paper provides a new approach to support Ver-
ification, Validation, and Accreditation (VV&A) of
models and simulations. The need for efficient and
objective methods to verify, validate and accredit
models and simulations is greater than ever. More
and more decisions are based on computer generated
data that are derived from models and simulations.
The strength of these decisions is a direct function of
the validity of this data. Based on the system identi-
fication of reduced order models, this new approach
approximates a complex high-dimensional model or
simulation by a relatively simple mathematical model
valid over a specified domain and range of inter-
est. Verification or validation is then accomplished
by the straightforward comparison of the reduced or-
der model structure and coefficients with the baseline
data or system. Well-developed identification meth-
ods and a structured procedure make this process
more efficient and objective than existing methods.

1 INTRODUCTION

Increasing computational capability combined with
the rapid response and inherent flexibility has allowed
M&S to replace some of the more conventional design
and analysis methods. Also, our desire to more accu-
rately represent detailed system behavior or to rep-
resent “systems of systems” has lead to highly com-
plex models and simulations. These trends, combined
with the increased use of M&S by decision makers
and designers, demand that M&S results be correct.
Yet, as our ability to model the real-world grows, our
ability to verify or validate these models shrinks.

As the reliance on M&S continues to grow, the
issue of Verification, Validation, and Accreditation
(VV&A) takes on increasing importance. With re-
spect to the overall issue of VV&A, there are two
competing requirements. First, the decision makers
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need answers they can trust. This requirement lends
itself to strict configuration control where a limited
number of accredited models form the body of ana-
lytical tools. However, if we restrict our use of mod-
els and simulations to those that are accredited, how
do we encourage innovation on the part of analysts,
accommodate new questions, or respond to the ever-
changing environment?

This leads to the second requirement. Decision
makers must be able to answer specific questions
about very complex environments and phenomenon.
This requires a large body of techniques that can be
appropriately applied to the specific situation. It also
requires an innovative VV&A process that allows in-
dependent development while maintaining the valid-
ity of the results.

The capability that is lacking is the ability to
clearly and efficiently compare a model or simulation
with the phenomenon it is supposed to represent or
to compare two different interpretations of the real-
world. Reduced order metamodels provide this capa-
bility and a new approach to support VV&A of mod-
els and simulations. Although directed primarily at
constructive (man-not-in-the-loop) models, the tech-
nique discussed here can also support the Distributed
Interactive Simulation (DIS) environment.

The paper is organized as follows: Section 2 pro-
vides background on VV&A, definitions for common
understanding, and introduces reduced order meta-
modeling; Section 3 demonstrates how to apply re-
duced order metamodeling to the VV&A process;
Section 4 provides an example of the verification of
two versions of the same simulation; and Section 5
summarizes the paper.

2 BACKGROUND

One of the major users of M&S has been the Depart-
ment of Defense (DoD). DoD has long recognized the
importance of M&S and with reduced budgets has
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become even more reliant on M&S. This increased
reliance, and a concern for the proliferation of mod-
els and simulations, has led the Secretary of Defense
to direct that each DoD Component shall establish
VV&A policies and procedures for M&S applications
managed by the DoD Component. Also, the “DoD
M&S Executive Agent” shall establish VV&A proce-
dures for their applications.

Current VV&A processes, however, are complex,
time-consuming, expensive, and cannot handle the
workload generated by the above directives. Con-
sequently, there is insufficient time and money to
accredit the models that deserve such status. Fur-
thermore, the process can take so long that changes
are often made to the model or simulation before the
VV&A process is finished, again drawing the results
into question.

The solution to this problem is a consistent, co-
ordinated, requirements-based policy and the ability
to efficiently analyze models and simulations. Both
of these elements are required. Even with the best
policy, it is not possible or desirable to “completely”
accredit every model or simulation in existence. This
1s clearly a poor use of resources. Only models and
simulations that need accreditation, for one purpose
or another, need to go through this process. Given
that we have such a policy, how does one go about
the VV&A process so that by the time the simulation
is accredited it is still relevant? This paper focuses
on a technique to efficiently support verification and
validation.

Standard VV&A techniques are not robust and still
leave room for interpretation. They generally involve
looking at the elements of the model or simulation,
dissecting it, and coming to conclusions by analyzing
these elements. If we cut a complex problem into
smaller more manageable pieces while maintaining
the overall complexity, we really do not reduce the
overall complexity of the problem that were are try-
ing to solve. We just make it tractable. If we have a
complex model, analyzing each and every piece does
not make the overall analysis less complex.

This paper provides an alternative solution to this
paradigm that will allow the VV&A process to meet
the competing requirements and workload demands.
This technique is cost effective, timely, and objective.
Rather than look at the parts of the model and at-
tempt to integrate the results, we look at the whole
model or simulation and identify its ability to rep-
resent the behavior of the phenomenon we are inter-
ested in.

We do not maintain the overall complexity of the
model or simulation. We propose that the analysis of
the model or simulation be accomplished via aggre-
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gation of the model details into a more manageable
piece that has a reduced order (more abstract) rep-
resentation. This is accomplished by increasing the
level of abstraction (reducing the order) of the model
or simulation until it is consistent with data used to
define the model or simulation. This reduction pro-
vides the ability to clearly and efficiently compare a
model with the phenomenon it is supposed to repre-
sent or to compare two different interpretations of the
real-world.

Since reduced order metamodels provide this aggre-
gation and abstraction, we provide a possible solution
to the VV&A dilemma. Our technique provides the
opportunity to verify or validate a model in a very
short period of time, with few resources, and with
objective results. With this capability, it is also pos-
sible to verify and/or validate (without going through
a formal validation process) models or simulations de-
veloped to adapt existing models and simulations to
new circumstances.

2.1 Definitions

We begin with some definitions to clarify our views
on the relationships between models and simulations,
verification, validation, and accreditation.

2.1.1 Models and Simulations

A simulation can be defined an instantiation or re-
alization of a model. In this case, the simulation is
different from the model. We will use a more abstract
definition.

To begin with, a model is a method of expressing
a theory. The expression of the model - its represen-
tation — distinguishes classes of models. A model can
be physical, such as a wind tunnel model of an air-
craft. It can be conceptual, like the construct of the
Bore atom. Also, the model could be a mathemati-
cal relationship or a method (algorithm) of expressing
that relationship — a simulation. Therefore, we con-
sider a simulation to be a particular representation of
a model and will not distinguish between them.

2.1.2 Verification

Verification is the process of determining that a model
implementation accurately represents the developer’s
conceptual description and specifications.

The verification process confirms that the model
functions as it was originally conceived, specified, and
designed. Here we compare the output of the model
to the conceptual description, specifications, or defi-
nitions that were used in its development.
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There are two elements to verification. If the model
is an original development, it must be verified against
its design specifications. If the model is a revision, up-
date, or modification of an existing (verified) model,
the performance of the model (and its differences) can
be verified with respect to the original specifications
or to the original model.

2.1.3 Validation

Validation is the process of determining the degree
to which a model is an accurate representation of the
real-world from the perspective of the intended uses
of the model.

Validation addresses the credibility of the model in
its depiction of the modeled world. In this case, the
model is not compared to the structure from which it
is developed, but to the behavior that it is supposed
torepresent. An important issue in the validationof a
model is its level of fidelity. Our understanding of the
phenomenon that the model is supposed to represent
must be at the same level of fidelity as the model.

2.1.4 Accreditation

Accreditation is the official certification that a model
or simulation is acceptable for a specific purpose.

The accreditation process is the procedure followed
by the application sponsor that culminates in the de-
termination that the model is suitable and acceptable
for its intended application.

We do not specifically address accreditation, only a
method to support accreditation through verification
and validation.

2.2 VV&A Methods

While the growing need is real, procedures for VV&A
have not kept pace. Current VV&A processes gener-
ally involve looking at the elements of the model or
simulation via a functional decomposition, and com-
ing to conclusions by analyzing these elements or by
a direct comparison with other models. This process
is complex, time-consuming, expensive, and still sub-
ject to interpretation. General methods of VV&A
include:

1. Algorithm checks )
2. Peer or independent review .
3. Computer aided software engineering tools

Verification is usually accomplished by either log-
ical or code verification methods. Validation can be
accomplished either by internal measures (structure
of the model) or a comparison of the output of the
simulation with other (external) data. We discuss
each separately.

2.2.1 Logical Verification Methods

Logical verification requires the identification of a set
of assumptions and interactions for which the M&S
correctly produces intended results. It determines the
appropriateness of the M&S for a particular applica-
tion and ensures that all assumptions and algorithms
are consistent with the conceptual M&S. Methods to
accomplish this determination are:

1. Documentation review

2. Design walk-through

3. Comparison of specifications to requirements
4. Comparison of design to specifications

2.2.2 Code Verification Methods

Code verification methods require a rigorous audit
of all compilable code to ensure that the representa-
tions of verified logic have been properly implemented
in the computer code. This audit is usually accom-
plished by one of the following techniques:

Sensitivity analyses and stress tests
Code walk-through

Algorithm checks

Automated test tools

Mathematical stability across platforms
Units check

Statistical test design for stochastic M&S
Rule-based systems tools
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2.2.3 Validation of the Structure

Validation of the structure analyzes the sensitivity of
the output to the input data. It attempts to deter-
mine how accurately the model represents the real-
world. It ensures that the representation(s) is (are)
balanced and consistent.

2.2.4 Output Validation

Validation of the output begins with the feasibility
of the results. Are they reasonable relative to the
inputs? If the outputs are reasonable, they are com-
pared with historical, test, or laboratory data.

2.3 Metamodels

From the above discussion we see that there is no uni-
fying approach to VV&A. The VV&A process uses
essentially the same methods that would be appro-
priate for design of the model. Without a truly in-
dependent and unified approach, VV&A has become
manpower intensive and is often subject to interpre-
tation. The reliance on subject matter experts makes



1408

the results of the VV&A a direct relation to the capa-
bility of the expert, their familiarity with the specific
behavior and representation, and the amount of time
that they have to complete the process. In addition,
VV&A for DIS requires a separate class of experts in
that environment (Lewis 1994).

The problem with VV&A stems from the fact that
the underlying phenomenon is high dimensional and
complex; representation of these systems is difficult.
This is why simulation models are often used. The
modeler takes the part of the phenomenon of interest
that he understands, and develops an algorithm to
represent that part of the behavior. Comparison of
this part of the phenomenon to the actual occurrence
is not always possible.

This is why we propose that part of the VV&A
process consists of an aggregate analysis of the model
or simulation using a reduced order (more abstract)
representation. Metamodeling has the ability to fa-
cilitate this type of abstraction (Zeimer, et al. 1993).

2.3.1 Higher levels of Abstraction — Reduced
Order Metamodels

A model is a method of expressing a theory and the
expression of the model is its representation. Assume
that the representation of a particular model is a sim-
ulation. As such, the representation is an algorithm
that does not have a closed form representation.

The VV&A methods we discussed above are exam-
ples of direct verification or validation of this repre-
sentation. Another approach to verification or vali-
dation of this representation is through a more ab-
stract “black-box” approximation of the causal time
dependent behavior represented by this simulation —
a metamodel.

Metamodels can be used for hierarchical simulation
or for analysis. Used to support hierarchical simula-
tion and model reuse, the metamodel is used in con-
junction with (coupled to) other simulations or sim-
ulation elements. Analytical metamodels are an in-
dependent structure that is used to understand and
extract information from the model. This analysis
can be focused on the VV&A task.

Sometimes metamodeling is confused with sensitiv-
ity analysis. Sensitivity analysis is an analysis of the
data given the model. It can be used to reduce the or-
der of the model by considering the sensitivity of the
output to certain variables. Our approach is similar
but different. In our procedure, we are considering
the sensitivity of the model given the data, behavior,
or the phenomenon we are trying to model.
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2.3.2 General Framework

As an abstraction, a metamodel is a projection of the
model onto a subspace defined by new constraints or
regions of interest. It is a projection of the behav-
ior from a higher order to a lower order subspace —
a reduced order model. One of the most important
aspects of this projection is the definition of the basis
of that subspace; i.e., the definition of the variables
that are to be considered.

There are three ways to define these variables. If
we are working with an element of a simulation or if
we are comparing a simulation to an exercise or some
other real-world data, the variables are defined by the
data set. If we are comparing the behavior to the con-
cept used to develop the model, that concept defines
the variables. If we are going to compare two ver-
sions of the same model, we must first determine the
important variables by an analysis of the simulation
under consideration.

The construction of a reduced order metamodel (se-
lection of the parameters used for the projection) in-
volves: a priori knowledge; the data; a set of meta-
model structures; and rules to determine the best
model to realize the data. There are two basic tech-
niques available for reduced order modeling: direct
and inverse modeling.

2.3.3 Direct Methods

First, a reduced order model could be developed by
applying basic principles to generate a more abstract
(approximate) version of the original model. This
would be an example of direct modeling. Direct mod-
eling is characterized by a specification of the ele-
ments of the model. Complicated systems are mod-
eled by “tearing” a system into its components, mod-
eling these components in a process called “zoom-
ing,” and then interconnecting these components to
construct a “physical” realization of the system (Sisti
1992, Willems 1991, Sisti 1989). The level of abstrac-
tion is controlled by the detail of the specification.
The model reveals the structure of the theory and
allows the prediction of the response to exogenous in-
puts as a function of the state of the system. The
solution of this modeling problem requires an under-
standing of the process being modeled and methods
to express this understanding at the desired level
of fidelity.

Reduced order models developed using this tech-
nique have been proposed in the VV&A literature
(Phase 3 - Concept Validation in Lewis (1994)). They
are “standalone” versions — completely new models.
The relationship between the real system, the original
model, and reduced order model is contained in the
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two mappings from the underlying system to each of
the models. Figure 1 depicts this correspondence.

Metamodel

Original
Model

Figure 1: Direct Model Correspondence

As seen from the figure, there is no guarantee that a
usable correspondence will exist between the reduced
order model and the high fidelity model (Naylor and
Sell 1982, Royden 1988). Traceability from the high-
fidelity model to the more abstract, lower fidelity, re-
duced order model becomes a significant issue. Also,
this technique still requires an @ priori understanding
of the structure of the elements and the interconnec-
tions between these elements at the specific level of
fidelity selected. This could be a difficult and risky
task and lack of this knowledge is often the reason
that a high fidelity simulation was used in the first
place.

Since traceability is not guaranteed, this technique
does not provide any efficiencies beyond standard
VV&A procedures.

2.3.4 Inverse Methods

The second technique develops the reduced order
model from the input-output data generated by the
original model or simulation. This technique is an ex-
ample of the “inverse problem,” and is represented by
Figure 2. From the figure, we see that the correspon-
dence between the original model and the reduced
order model is direct. The issues now are the level
of fidelity, range of applicability, and accuracy of the
response. These are a function of the reduced order
modeling technique and data.

Metamodel

DATA

Ooriginal
Model

Figure 2: Inverse Model Correspondence

Properly developed, a reduced order model derived
from inverse modeling is clearly a mathematical ap-

proximation between a set of input factors and re-
sponses generated by the high fidelity model. Trace-
ability to the high fidelity model is immediate. As
such, it allows the assessment of individual factors
on the performance of the model and can be used to
study system behavior, verify responses with specifi-
cations, or validate the model with respect to real-
world data.

3 REDUCED ORDER METAMODELS
FOR VV&A

VV&A has many dimensions. Although the proce-
dure is the same, we consider each case separately to
facilitate understanding. Assume that we have a re-
duced order model of an existing simulation and that
we also have a similar description of the real-world
data that can be used for comparison.

3.1 Verification of an Original Model

In our first case, we have a model that was developed
from a specification or conceptual design. Verifica-
tion is straightforward. We directly compare the re-
duced order metamodel structure and coefficients to
“expected values” inherent in the design specification
that came from the real-world experiments, exercises,
or test data used to develop the specification.

3.2 Verification of a Modified Simulation

Here we have an existing accredited simulation that
has been modified for some purpose (improved execu-
tion speed, hosted on a new platform, new capability,
etc.). As stated above, we can verify the model with
respect to the specifications or, for the portions of the
modified simulation that do not add capability, to the
existing (unmodified) simulation. If we use the origi-
nal specification as the baseline, we proceed as above.
If we use the existing simulation as the baseline, verifi-
cation consists of developing a reduced order model of
the original and modified simulations using the same
model structure. Now, since the structure of each
reduced order model is identical, we simply compare
the reduced order metamodel coefficients.

3.3 Validation

This is the most complex use of reduced order meta-
modeling. In order to use reduced order metamod-
eling to validate a model, we must compare the re-
duced order model to real-world data. This requires
that we have a record of the phenomenon that we
have modeled. Also, this record must contain all of
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the behavioral characteristics that have been incorpo-
rated into the model. Given this record, we develop
a reduced order model of both the real-world event
and the model we are going to validate. Once we
have these reduced models, we simply compare the
reduced order model coeflicients.

If additional information was included in the model
that was based on subject matter expertise or anal-
ogy and not available in the real-world data, this ad-
ditional data must be also added to the real-world
data to make the comparison possible.

4 RESULTS AND DISCUSSION

The theory supporting reduced order metamodels
has been developed and successful applications have
been demonstrated. Zeimer, Tew, Sargent, and Sisti
(1993) developed a static least squares metamodel
of the Tactical Electronic Reconnaissance Simula-
tion Model (TERSM) that approximated the num-
ber of emitters reported with a CEP of 5 nm or less.
Caughlin (1994a) outlined a general framework for
approaching the reduced order metamodeling prob-
lem that would support dynamical system models and
presented an output-error dynamical metamodel of
TERSM. In Caughlin (1994b) we expanded the dy-
namics to include Ito stochastic systems and applied
an optimization technique (Adaptive Simulated An-
nealing) to generate a TERSM metamodel that ac-
commodated the stochastic nature of the simulation.

All of the above were examples of analytical meta-
models (although the last two could be used as sim-
ulation metamodels). The first metamodel addressed
the final results of the simulation (in terms of mod-
eled system accuracy). The output-error metamodel
approximated the system behavior as represented by
the simulation. The third metamodel represented the
performance of the system in locating a single emit-
ter and approximated the accuracy of the location
estimate as the number of measurements increased.

We now provide a simple example of reduced order
metamodeling for verification of a modified simula-
tion (the situation described in Section 3.2 above).

The static least squares TERSM metamodel gen-
erated by Zeimer, Tew, Sargent, and Sisti related air-
craft altitude, aircraft velocity, sensor azimuth cov-
erage, and sensor channel capacity to the number of
emitters located within a 5 nautical mile circular er-
ror probable (CEP). This model is shown below:

Vy = 23.567-0.669z, —2.842z2 + 1.298z3 +
3.344z4 — 0.491x,23 + 0.963z 14 +
0.414zx3 + 1.1552224 + 0.231z324 +
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0.404z,z273 + 0.198z,2924 — (1)
0.285z,23z4 4 2.037z% — 0.788z3 +
0.201z,z3z4 — 2.743z2 4 0.71423 +
5.836z3 + 0.744z3 — 2.947z% — 5.823z3

This model was developed from the Version 1 data
(shown in Table 1) that came from simulation runs
on a Sun workstation. This simulation was optimized
for this workstation and included code to support a
RAMTEK display of the emitter field and results.

Another version of the code (Version 2) was recov-
ered from the archive and hosted on a 100 MHz 1486
PC using Lahey Fortran 77L EM/32. Answers pro-
vided by this version of the simulation were similar
but not the same as the results from the experiment
run on the Unix workstation. If the original simula-
tion was accredited, could this second representation
also be considered a “verified” representation of the
tactical electronic reconnaissance system?

Standard VV&A procedures could have been used
to answer this question. This would require an ex-
tensive analysis of the code, the different compilers,
and the effects of the numerical accuracy. Instead,
we used reduced order metamodeling. The same con-
ditions that were run on the workstation were dupli-
cated on the PC. The least squares metamodel (using
the same model structure) generated from this data
is:

VY = 22.4331-0.0148z; — 2.7822z5 + 0.1432z3 +
3.1432z4 + 0.3653z,23 + 1.2439x 124 +
0.1483z9zx3 + 0.4430z924 + 0.2698zx324 +
0.4369z,x9x3 + 0.3286z 12224 + (2)
0.0960z2z3z4 — 0.27912% — 0.8326z22 —
0.7642z z3z4 — 1.8413z3 + 0.7577z3 +
4.9038z3 + 1.092423 — 1.1907z? — 4.844323

The angular difference between the subspaces de-
fined by the vectors of coeflicients is .15 radians indi-
cating that, while similar, the two metamodels con-
tain different information. With the standard as-
sumptions on the data, the probability of error in
accepting the hypothesis that both of these models
represent the same simulation is approximately 70%.
Clearly, the two versions of the simulation do not rep-
resent the same behavior.

There are two potential reasons for the differences
between the output of the two versions of the “same”
simulation. First, it is possible that the experimental
procedures were different. Since all of the data sets
for the original experiment were not available, one or
more of the 53 other parameters used in TERSM to
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Table 1: Input-Output Data for Metamodel Construction

ALTITUDE | VELOCITY | AZIMUTH | CHANNEL || EMITTERS | EMITTERS
COVERAGE | CAPACITY || VERSION 1 | VERSION 2

40000 1150 150 30 615 514
40000 1150 150 4 193 158
40000 1150 60 30 327 329
40000 1150 60 4 53 69
40000 186 150 30 247 278
40000 186 150 4 73 73
40000 186 60 30 111 174
40000 186 60 4 47 61
5000 1150 150 30 436 284
5000 1150 150 4 226 183
5000 1150 60 30 322 250
5000 1150 60 4 138 149
5000 186 150 30 180 180
5000 186 150 4 116 94
5000 186 60 30 98 105
5000 186 60 4 66 66
22500 668 105 17 62 519
5000 668 105 17 439 307
40000 668 105 17 570 523
22500 186 105 17 181 210
22500 1150 105 17 464 412
22500 668 60 17 419 414
22500 668 150 17 607 505
22500 668 105 4 240 252
22500 668 105 30 658 617
31250 909 128 24 621 521
31250 909 128 10 424 361
31250 909 82 24 512 489
31250 909 82 10 347 322
31250 427 128 24 634 579
31250 427 128 10 489 399
31250 427 82 24 570 556
31250 427 82 0 434 396
13750 909 128 24 602 486
13750 909 128 10 441 346
13750 909 82 24 560 469
13750 909 82 10 373 339
13750 427 128 24 651 567
13750 427 128 10 526 404
13750 427 82 24 605 535
13750 427 82 10 471 411
13750 668 105 17 580 495
31250 668 105 17 584 504
22500 427 105 17 575 524
22500 909 105 17 529 448
22500 668 82 17 512 499
22500 668 128 17 597 523
22500 668 105 10 441 406
22500 668 105 24 640 585
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define the aircraft and sensor performance may have
been set in such a manner that the simulated systems
were not the same. Correcting the differences in the
parameters may result in the same behavior.

If different experimental procedures are ruled out,
the simulated systems should be identical. In this
case, we conclude that the two simulations are not
representations of the same high fidelity model. Ver-
sion 2 should not be considered a “verified” repre-
sentation of the Tactical Electronic Reconnaissance
Simulation Model.

5 CONCLUSION

In this paper we have presented an alternative ap-
proach that will allow the VV&A process to meet
the competing requirements and workload demands.
This approach does not maintain the overall complex-
ity of the model or simulation, but verifies or vali-
dates a simulation through analysis of a reduced or-
der (more abstract) representation of the simulation.
By increasing the level of abstraction (reducing the
order) of the model or simulation, we aggregate the
model details into a more manageable form.

Reduced order metamodeling was then used to ex-
amine two versions of the same simulation. The pro-
cedure clearly demonstrated the probability of error
in accepting the second version of the “same” simu-
lation as representative of the first.

This technique is cost effective, timely, and objec-
tive. Increasing the level of abstraction provides the
ability to clearly and efficiently compare a model with
the phenomenon it represents or to compare two dif-
ferent interpretations of the same behavior.

A reduced order metamodel is a projection onto a
lower order subspace. The parameters that define this
projection are well defined for simulation and analyt-
ical metamodels. Since reduced order metamodeling
for VV&A is a new application of this method, fur-
ther research is required to define the best approach
to define the projection parameters.
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