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ABSTRACT

Tactical simulation models are often used to assess
vulnerabilities and capabilities of combat systems and
doctrines. Due to the complexity of tactical simula-
tion models, it is often difficult to assess the rela-
tionship between input factors and the performance
of the simulation model. To facilitate this type of
assessment, simulation analysts often use the simula-
tion model to emirically construct a black-boz approx-
imation of the causal and time dependent behavior
of the simulation model. This type of approxima-
tion is known as a metamodel and can be viewed as
a summary of the behavior of the simulation model.
We demonstrate this technique in the context of an
example using TERSM (Tactical Electronic Recon-
naissance Simulation Model). The results indicate
that metamodeling is applicable to tactical simula-
tion models and that the technique has a wide range
of uses.

1 INTRODUCTION

Tactical simulation models are often employed by the
Department of Defense to assess the capabilities and
vulnerabilites of various combat systems and doc-
trines. These simulation models are usually highly
complex and of relatively high dimensionality. That
is, the performance of the simulation model is depen-
dent on a large number of parameters or input factors
that act and interact in a complex manner. Thus, it
is often difficult to assess the relationship of individ-
ual input factors to the performance of the simulation
model. Recently, a technique known as metamodeling
has generated interest in the simulation community
for its ability to facilitate this type of assessment.

A metamodel is a mathematical approximation of
the relationship between a set of input factors and
one or more responses. Metamodels are usually esti-
mated empirically via experimentation with a simula-
tion model, and thus, metamodels are models of mod-
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els. With respect to a given response, a metamodel is
black-boz approximations of the causal (mechanistic)
and time dependent behavior of a simulation model.
Figure 1 depicts the relationships among the real sys-
tem, the simulation model, and the metamodel.

In this report, we introduce metamodeling and il-
lustrate its applicability to the analysis of tactical
simulations. In Section 2, we summarize the mathe-
matical and statistical concepts and notation of meta-
modeling. In Section 3, we present an example using
TERSM (Tactical Electronic Reconnaissance Simula-
tion Model). In Section 4, we present some conclu-
sions.

2 METAMODELS

Metamodels can have various forms, but we restrict
our attention to the most commonly used class of
models: least squares models. To simplify the discus-
sion, we focus on polynomial and simple transformed
response polynomial models of the forms

y=X8+e¢ (1)

and

y* :X,B-l—e, (2)

where y is an n x 1 vector of responses, X isan n X p
data matrix containing the levels of the input factors,
Bis a px 1 vector of unknown metamodel coefliclents,
€ is an n x 1 vector of error terms, and y* is a vector
of transformed responses. The transformation on y
can be any real function over the range of the un-
transformed response. Functions such as the square
root and natural logarithm are often used to linearize
sets of observations in order to obtain simpler and/or
better approximations of system behavior.

For example, the relationship between a pair of fac-
tors, z1 and z2, and a response, y, may have the
polynomial form
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y = Bot+Piri+Brar+Piorrra+Piai+nzite (3)

or the transformed response polynomial form

VU = Bo+Briri+Poxy + Prarize + friai + Pasri +e.
(4)

Both metamodels are said to be linear models since
all coefficients have power one.

The type of metamodel to use is often dictated by
the purpose of the metamodel and by properties of
the system. Metamodels are usually employed for
one or more of the following purposes:

1. studying system behavior,
2. predicting responses,

3. sensitivity analysis, or

4. optimization.

Depending on the purpose of the metamodel, the
form and the fineness of the approximation may vary
greatly. For example, a simple linear approximation
is often adequate for studying some elements of sys-
tem behavior such as the degree to which certain fac-
tors affect the response while nonlinear approxima-
tions may be more appropriate for prediction.

Some of the important properties of the system
that influence the type of model used include:

1. characteristics of the response (discrete or con-
tinuous, qualitative or quantitative, random or
deterministic, etc.),

2. characteristics of the input factors (discrete or
continuous, qualitative or quantitative, random
or deterministic, etc.), and

3. dimensions of the experimental region.

In this paper, we restrict our attention to systems
with quantitative, continuous responses; and quanti-
tative, deterministic input factors. Metamodels for
these systems can be estimated using the method of
least squares. We consider both random and deter-
ministic response cases. Metamodels can also be ob-
tained using more advanced techniques which are be-
yond the scope of this report. The techniques out-
lined in the following subsections are applicable to
random responses in general, but a subset of the out-
lined techniques are applicable to the deterministic
response case as well. Thus, we will explain all the
techniques in terms of the random response case and
note exceptions for the deterministic response case.

In Section 2.1, we discuss least squares model esti-
mation. In Section 2.2, we briefly summarize a pair
of statistical analysis tools called analysis of variance
and statistical inference. In Section 2.3, we briefly dis-
cuss some measures and methods for determining the
validity of metamodels. In Section 2.4, we introduce
and briefly discuss some techniques for efficiently de-
signing experiments. Finally, in Section 2.5, we add
some perspective to material in Sections 2.1-2.4 by
outlining a general metamodeling process.

2.1 Least Squares Metamodel Estimation

To illustrate the method of least squares, con-
sider a set of observations (y;, ¢ = 1,2,...,n)
and corresponding set of factor levels (z;;, ¢ =
,2,...,n, 7=1,2,...,p) given by

Y1 Zi1 Zi2 - ZTip
Y2 T21 T2 - Typ
Yn ZTni1 Tn2 - Tnp

Suppose we postulate a model given by

Y= Po+ Pizy+ Pazo + Praziza + Prizi +e. (D)

In this case the number of parameters, p, is equal
to five, corresponding to the number of coefficients
in the postulated model. This same model can be
written in general vector notation as

y=X8+e¢.

Now suppose that we obtain an estimated model
given by

y = Xb, (6)

where y is an n x 1 vector of estimated responses, and
b is a p x 1 vector of estimated model coefficients.
The n x 1 vector of deviations of the observations
about the fitted model, called the vector of residuals,
is given by

e=y-y. (7)
The least squares estimator of B is obtained by

setting the derivative with respect to b of the sum of
squared residuals equal to zero, such that

6, _
Slee] = 0 (8)

[y~ Xb)(y - Xb)]

—2X'y + 2(X'X)b

n
o O
—

—_ ~~~
(] Nej
R



Metamodel Applications Using TERSM 1423

Simplification leads to the least squares estimator

b=(X'X)"'X'y (11)

(see Myers 1990, p. 88). Thus, least squares esti-
mates are estimates for which the unweighted sum of
squared residuals 1s minimized.

For example, consider the estimated simple linear
regression model given by

g=1bo+bz.

The ith predicted response, observed response, and
residual are denoted by g;, y;, and e; respectively.
The given model is a least squares model if and only
if the sum of the squared vertical distances from each
observation to the fitted model is minimized.

2.2 Analysis of Variance and Statistical In-
ference

Analysis of variance (ANOVA) and statistical infer-
ence are statistical methods that are commonly em-
ployed to quantify the importance of factors with re-
spect to a given response. They are extremely useful
and powerful because they allow the analyst to make
statements concerning the statistical significance of
various factors. For example, these methods could
be used to determine if it is likely that z;z5 in the
metamodel given by equation (5) affects the response.
Without ANOVA and statistical inference, random-
ness and/or lack of fit between the metamodel and
the observed data make such conclusions difficult to
reach.

The principal drawback of ANOVA and statisti-
cal inference is that they require certain assumptions
concerning the behavior of €. In particular, the as-
sumption that e be normally and independently dis-
tributed with homogeneous variance is required. This
assumption implies that there must be some ran-
dom noise in the response which causes observed re-
sponses to be normally distributed with equal dis-
persion about the estimated model, independent of
the location in z-space. These methods can still be
employed in violation of the assumptions, but the re-
sults are unpredictable, undependable, and should be
treated with suspicion especially when the response
is not random (i.e. the deterministic response case).

To illustrate ANOVA and statistical inference, con-
sider the ANOVA table for the metamodel given by
equation (5), shown in Table 1. The purpose of
ANOVA table construction is to break-down variabil-
ity in the response and assign portions of the variabil-
ity to sources of variation based on the observed con-
tribution of each source. Contributions to variability

are measured using sums of squares, and the corre-
sponding degrees of freedom represent restriction on
the calculation of sums of squares.

Table 1
ANOVA Table for the Metamodel Given
by Equation (5)

Source of | Degrees of Sum of
Variation Freedom Squares
Metamodel 5 y'X(X'X) ' Xy

Error n—>5 y'y - y'X(X'X) Xy

Total n Y'y

In addition to the basic ANOVA table, it is also
possible to subdivide the metamodel sum of squares
given in Table 1 in order to account for the variability
due to individual model terms. For the metamodel
given by equation (5), the variability due to ziz5 is
given by

YX(X'X) Xy - y'Xo(X5X2) ' Xy,  (12)

where X is the data matrix without the fourth col-
umn (which corresponds to z;z3).

Sums of squares are used to measure the variability
in the response because they possess useful distribu-
tional properties when our assumptions concerning
hold. We can take advantage of these distributional
properties to conduct statistical hypothesis tests (see
Myers 1990, pp. 95-125). An hypothesis test is a
formal means of quantifying the probability that an
assertion is incorrect. For example, consider the hy-
pothesis that B;2 = 0, or in other words, that the
interaction between z; and z» is insignificant. In
the formal notation of hypothesis testing, this can
be stated as

Hoy : B2 =0 versus H; : 12 #0.

If the null hypothesis is correct, then under the
given assumptions

y'X(X'X)" Xy — y'Xao(X4X5)~ Xy
o2 = Fa,l,n—p»
(13)
where Fy 1 n—p is @ point of an F-distribution with 1
and n — p degrees of freedom (see Myers and Milton
1991, p. 116). The value of a for which equation
(13) holds is called the p-value and is the probability
that Ho is true. Thus, a very low p-value for the
given test indicates that it is highly likely that 81,
explains a significant portion of the variability in the
response. Such coefficients are said to be statistically
significant.
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2.3 Validation

The validity of a metamodel indicates the degree to
which the specified purpose of the metamodel can be
accomplished Sargent (1991a). For example, a simple
linear approximation may be valid for studying some
elements of system behavior but completely invalid
as a means of making predictions. Validity is also
specific to the experimental region used to develop
the metamodel. In other words, the metamodel is
expected to be valid for a specific purpose over the
experimental region.

Validity can be measured using many available di-
agnostics. For a complete discussion of diagnostics
for the random response case see Myers (1990, Chap-
ter 4). Diagnostics for the deterministic response case
are discussed in Kleijnen (1987). In this section, we
simply discuss the diagnostics used in the example in
Section 3.

One diagnostic that is appropriate for both deter-
ministic and random responses is the squared coeffi-
cient of determination, R?, which is given by

_ ylx(xlx)—lxly
Y'y '

R? (14)
Note that the numerator is the sum of squares for
the metamodel and the denominator is the total sum
of squares. Thus, R? measures the proportion of
the total variability in the response explained by the
metamodel. The higher R? the better the metamodel
fits the given data. While R? provides a good, gen-
eral measure of fit it does not measure the uniformity
of fit. In other words, a metamodel with a high R?
may have some areas of very poor fit as long as there
are relatively large areas with very good fits. Also,
R? only measures the degree to which the estimated
metamodel fits the data that is used to estimate the
metamodel. Thus, R? does not account for fit in
areas where there is no data. In addition, for the
random responses case, the use of R? by itself grav-
itates the model selection to an overfit model (one
which tracks random error). This has the detrimen-
tal effect of reducing the prediction capability of the
metamodel (see Myers 1990, pp. 179-180).

In order to test the validity of a metamodel across
the entire experimental region, analysts often advo-
cate a technique known as data splitting (see Myers
1990, pp. 169-170). Data splitting is applied by using
some observations to fit a model, and a separate set
of observations to measure the validity of the model.
This allows the validity of the metamodel to be tested
independently of the data used to fit the model. In
cases where data is expensive and/or difficult to ac-
quire, this may be impractical. Often data that is not

used to fit the metamodel is supplemented with date
that is used to fit the metamodel in order to measure
validity. This can result in misleading measures o:
validity.

Another approach to validation involves the use o
a diagnostic known as the PRESS statistic (see Myers
1990, pp. 170-178). To calculate the PRESS statistic.
a set of PRESS residuals is calculated by mathemat-
ically factoring out the dependence of each observed
residual on the data used to estimate the metamodel
This method eliminates the data splitting problems
and is applicable for both the random and determinis-
tic response case. However, the details of the PRESS
statistic are beyond the scope of this report.

Two diagnostics that are appropriate for data split-
ting in the deterministic response case are the maxi-
mum absolute error (MAE) and the average absolute
relative error (AARE). MAE is simply the absolute
value of the largest residual. By basing model valida-
tion on MAE, the model selection is gravitated to a
uniform but not necessarily good fit.

The AARE is given by

AARE = —Zi=11|le"/yi|. (15)

This error is similar to R? in that it provides a good,
general measure of fit, but it has the same drawback
as R? in that use of the AARE does not insure uni-
formity of fit.

Note that the difficulties with the individual diag-
nostics can be overcome by using them in combina-
tion. This is done in the example in Section 3.

2.4 Design of Experiments

The purpose of experimental design is to obtain better
estimates and predictive models with fewer observa-
tions by carefully constructing X. This is done by
preselecting certain values for the k factors in the ex-
periment. Assuming that we are using an unbiased
estimator such as a least squares estimator, the qual-
ity of experimental designs is usually measured with
the variance of prediction. The variance of prediction
is the variance of the true population about the fitted
model at some arbitrary location in z-space, Xy and
is given by

var[y(xo)] = o2xp(X'X) " x. (16

For any set of similarly scaled competing designs
with the same number of observations, it can be
shown that var[g(x¢)] is minimized when X'X = nl
(see Myers 1976, p. 109). In this case, X is said tc
be orthogonal. The minimization of the variance o
prediction for orthogonal designs is due in part to the
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fact that orthogonal designs result in models with un-
correlated coefficients. This is not true of any other
designs. Thus, orthogonal or near-orthogonal designs
should be used whenever possible.

We consider two basic designs in this report: (1) 2*
factorials and (2) central composite designs (CCD).
A 2F factorial experiment consists of k factors each at
two levels arranged in all possible factor/level combi-
nations. To obtain an orthogonal design, the levels of
the input factors are usually centered and scaled such
that high level of the factor appears as a 1 and the
low level of the factor appears as a —1. The centering
and scaling transformation is given by

S (f"d:’s), (17)

where &; is the level of the ith input factor, £; is the
average of the low and high levels of ¢;, z; is the
centered and scaled level of the ith input factor, and
d; 1s the spacing between the low and high levels of ;.
While centering and scaling input factors in designed
experiments usually results in better metamodels, it
may require the analyst to perform some extra work
in order to analyze the model. For example, if an
analyst needs to predict a response at some point
&, using a metamodel for centered and scaled input
factors, then he must rescale £, to xo using the same
centering and scaling formula used in the experiment.

To illustrate, consider a 22 factorial experiment
replicated » times for the purpose of estimating the
regression model given by

y = Po + Brz1 + Paz2 + Praziz2 + € (18)
The corresponding design matrix is given by

.11, 1,

1
11- _lr _1r 17‘
1
1

X = (19)

r lr _]-r _1r
T ‘_lr lr _]-r

where 7 is the number of replications of the experi-
ment and 1, is an r x 1 column vector of ones.

b= lxy. (20)
T

An important advantage of factorial experiments
over one-variable-at-a-time experimentation is that
we can estimate the interaction effects of the fac-
tors on the response. Further details on factorial ex-
periments can be found in Box, Hunter, and Hunter
(1978, Chapter 10).

A central composite design (CCD) consists of a 2
factorial design augmented with 2k + 1 extra design

points to allow the estimation of second order models.
To illustrate, consider a CCD replicated r times for

the purpose of estimating the regression model given
by

Y= Po+ Prz1+ faza + Prazizy + Prizl + Pzl + .
(21)
The corresponding design matrix is given by

1, 1, 1, 1, 1, 1, ]
1, -1, -1, 1, 1, 1,
1, 1, -1, -1, 1, 1,

1, -1, 1, -1, 1, 1,
X=11 a 0 o0 o2 o |-22
1, -a 0, 0, &2, o,

1, 0 o« 0 0, o2
_]-r 0, -—-a, 0, 0, (1'2 i

Note that when o« = 1, the CCD design is near-
orthogonal and allows for the estimation quadratic
curvature. A near orthogonal design for, higher or-
der models can be obtained by layering CCDs. This
concept is demonstrated in the example in Section
3. Further details on CCDs can be found in Myers
(1976, pp. 127-134).

3 TERSM EXAMPLE

The Tactical Electronic Reconnaissance Simulation
Model (TERSM) was built in 1969 by the Rand
Corporation, for the purpose of making compara-
tive performance evaluations of a variety of airborne
direction-finding systems. Simulating a reconnais-
sance mission through a pulsed radar environment,
its primary output is a lower bound on the emitter lo-
cation accuracy attainable by accumulation and pro-
cessing of bearing measurements. These measures of
emitter location accuracy are known as Circular Er-
ror Probabilities, of CEPs. In essence, it is the imag-
inary circle or ellipse around an emitter, of such size
that the probability of that emitter’s actually falling
in the circle is 50%. Obviously, the smaller the CEP,
the more accurate the associated location estimate.

The model was designed to simulate a reconnais-
sance mission in sufficient detail to assess the influ-
ence of variations of system design parameters and
input factors on overall system performance. Thus,
by altering input factors and parameters, analysts can
use TERSM to compare and contrast proposed air-
borne direction-finding systems and tactics.

To demonstrate the usefulness of metamodeling in
this type of assessment and to illustrate the meta-
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modeling process, we clected to perform a system be-
havior study. In particular, we wanted a reasonably
accurate approximation of the relationship between
the number of emitters located on the test mission
within five nautical miles or less CEPs, and four input
factors: (1) altitude in feet, (2) velocity in knots, (3)
azimuth angle in degrees, and (1) channel capacity in
number of channels. The test mission consists of a set
of hostile and friendly radar emitters of various types
arranged in set locations on a hypothetical battlefield.
Historically, the test mission has been the standard
scenario used to compare competing systems. We se-
lected the following experimental region: (1) altitude
from 5000 to 40000 feet, (2) velocity from 186 to 1150
knots, (3) azimuth angle from 60 to 150 degrees, and
(4) and channel capacity from 4 to 30 channels. The
selected factors and experimental region were chosen
based on previous studies with TERSM. Note that
the response is continuous and deterministic and that
all of the input factors are continuous and determinis-
tic except for channel capacity, which is discrete and
deterministic. To accomplish our stated purpose, we
specified the following goals for the validity of the
model: (1) R? of at least 95%, (2) MAE less than
100, and (3) AARE less than 5%. All 49 observa-
tions given in Appendix I were used to validate the
model.

To obtain a satisfactory metamodel, we made seven
model fitting iterations. The observations used to
estimate the metamodels were drawn from the val-
idation test set. Although the stated purpose of
the metamodel does not include simplicity, all terms
with p-values greater 50% were eliminated sequen-
tially from each model in order to obtain models of
manageable size. Usually p-values of around 10-30%
are used to eliminate insignificant factors, but since
we were dealing with an obvious violation of assump-
tions (i.e. a deterministic response), 50% was used
for conservatism. All models were estimated for cen-
tered and scaled factors levels. The correspondence
between the actual input factors used in the experi-
ment and the centered and scaled input factor levels
used to fit the metamodels is given in Table 2a and
Table 2b.

Table 2a
Correspondence Between Actual Input Factor Levels
and Centered and Scaled Input Factor Levels

Input Factor | Variable -1 -0.5
Altitude T 5000 13750
Velocity T2 186 427
Azimuth I3 60 82

Channel Cap. T4 4 10

Table 2b

Correspondence Between Actual Input Factor Levels
and Centered and Scaled Input Factor Levels

Input Factor | Variable 0 0.5 1
Altitude z) 22500 | 31250 40000
Velocity zo 668 909 1150
Azimuth I3 105 128 150

Channel Cap. T4 17 24 30

The following is the sequence of postulated and fit-

ted metamodels:

Metamodel 1

y = PBo+pfizi+ Paza+ fazat
Bars+ Prarizo + Piaziza + fraTiTa+
Ba3zozs + faazo24 + P3a2314 + Pr23T1T223+
Br2az1roTs + P1342123T4 + Po34T2T324+
Pr23aT1L2L3T4 + €

y = 224.118+4 85.750z2 + 57.750x3 + 89.000x4+
27.750z1z4 + 21.000x223 + 47.2502924,

Metamodel 2

y = Po+pizy+ Baza + faza+
Bars+ Prax1To + Prazizs + Prazize+
+B23z223 + B2az0x4 + Baaxszy + Pr123T1T023+
Br241T2%4 + P134T123L4 + P234T223T4+
B123aT122T324 + Pr12? + Pooz3+
Pazed + Paszi + €,

y = 5326334 11.944z; + 91.9442, + 61.778x3+
102.333z4 + 16.000z 23 + 27. 752124+
21.000x023 + 47.250x224 + 19.750232 4+
12.250z 12923 + 12.5002 12324 —
30.608z% — 212.608z3 — 86.108z3,

Metamodel 3

Iny = fo+ fri+ Pazo + faza+
Baza + Praziz2 + fr3zizs+
Brazirq + Pozrozs + Poarors + P3aT3za+
P123T122T3 + Pr24L1Z2T4 + P134L123T4+
Ba3axar3ty + Bro3ar1To3T4 + Pr1Ti+
B2223 + P33z + Baazs + ¢,

Iny = 6.346—0.047z, + 0.417z5 + 0.306z3+
0.467z4 — 0.025z 124 + 0.075z 123+
0.170z1z4 + 0.098z9z4 — 0.028z3z4+
0.066z 2023 — 0.078z9z314 — 0.0492 292324 —
0.133z% — 0.679z3 — 0.125z% — 0.363z3,

Metamodel 4



y =

Iny
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Bo + Brz1 + Poxa + Pazs+

Baza + Praxrxs + Praries + Prazi o+
Pasrar3 + P2a2T4 + Pagzsrg + Prosz zezs+
Br2ar1Tary + Br3ax1r3ry + Pazqdorarg+
Prasaixorazs + Priat + Poszi+

Pazr3 + Paazi + ¢,

23.319 + 2.994x2 + 2.04223 4 3.28824+
0.488zr 03 + 1.006z 24 + 0.4072925+
1.155zor4 + 0.25T2324 — 0.4000 | 2oa3—
0.288zox3204 — 0.84107 — 5.75723 — 0.701 23—
2.683x3,

Metamodel 5

Bo + 3121 + Bazo + Bara+

Bara + Prariza + Praxiz3 + Prazizat
Bazzars + PogLoxg + P3aL3zs + Praszirozs+
Broar1zaoryq + Bi3ar1r3Ls + Poza2ozzzyt
Biazazirorazy + B112? + Booxd + Paszd+
Baazi + Pr11z3 + Pasaxd + Pazsei+

Baaar3 + Bri11r] + Pooaozi+

B3333L3 + Paaaazi +¢,

549.756 — 32.722x, — 111.537z9 — 62.778zx3+
180.556x4 + 16.441z 23 + 26.647Tx 124+
20.882z9x3 + 46.971z024 + 18.676x3z4+
12.508z 1223 + 9.785x 12024 + 12.8922 2324+
61.972z3 — 22.962z3 — 86.491z3+

44.6671?:13 + 203.481.1’% - 78.222;132 — 90.45423‘11—
210.9181’3,

Metamodel 6

Bo + Prizy + Paza + Pazat

Bara+ Praxiie + frax123 + Prazizs
+P23T223 + PoaZ2Za + P3aT3Ta+
Bru3r1Z2T3 + Pr2aT1TaTq + Pr3aT123T4+
PBozazaz3zs + P1234T1T22324+

Br1z2 + foz3 + Pasxl + Paazi+

+B11123 + Po2223 + Pasaxd + Pasazi+
Brir1z? + PBrazazh + 3333z + Paaaazi + €,

= 6.350 — 0.047z; — 0.308z» + 0.075z3+

0.267z4 — 0.0222122 + 0.073z,z3+
0.162z1z4 + 0.021z223 + 0.099z 24—
0.029z3z4 + 0.066x 12223 + 0.014z 12224 —
0.078z9z3z4 — 0.0492 1222324 + 02601%—
0.12522 — 0.35922 + 0.72523 + 0.23023+
0.19923 — 0.398z% — 0.6822,

Metamodel 7

VY = Bo+Pray + fazo + Baxzz+
Bazg + Prazirs + Priazizs + frazizat
+P232223 + foazazy + Paazzzat
Pra3Tir2x3 + Pr2421Z924 + f13421 T34+
P23axaz3tq + Pra3az 1222324 + Pr12i+
P23 + Pazzl + Paazi+
+11123 + Pao2z3 + Pazzzd + Paaszi+
Prinzt + Paozazh + PB333328 + Pagasti + €,

VY = 23.567—-0.669x, — 2.842z5 + 1.298z3+
3.34424 — 04912123 + 0.963z 24+
0.414z9x3 + 1.155z924 + 0.2312324+
0.404z1x523 4+ 0.198z1z024 + 0.201z 2324 —
0.285z2r324 + 2.0372% — 0.78823
—2.743z% + 0.71423 + 5.83623+
0.744z3 — 2.947z} — 5.823z3.

Information on the designs used to estimate these
models and the resulting validity measures are given
in Table 3a and Table 3b.

Table 3a
Summary and Results of the Model Fitting Procedure
Model [ R®> | MAE AARE
1 71.7% | 421.6 44.3%
2 95.5% | 200.6 14.2%
3 99.2% | 256.3 12.3%
4 98.2% | 225.4 11.4%
5 97.4% | 120.9 8.3%
6 99.4% | 94.3 4.0%
7 98.9% | 73.51 4.7%
Table 3b
Summary and Results of the Model Fitting Procedure
Model Design Obs.
1 2% factorial w/ 1 center run 1-17
2 CCDw/a=1 1-25
3 CCDw/a=1 1-25
4 CCDw/a=1 1-25
5 CCD w/ a; =1 and a2 = 0.5 1-49
6 2 layer CCD w/ @1 =1 and a2 = 0.5 | 1-49
7 2 layer CCD w/ a1 =1 and a2 = 0.5 | 1-49

Note the improvement in the validity as the com-
plexity of the metamodel increases. Both models
(6) and (7) satisfied our validity requirement and we
stopped here. However, note that the validity test
set is the same as the data set used to fit these mod-
els. Thus, as discussed in Section 2.3, these models
are probably somewhat less valid than the validity
measures indicate. If the process was continued, the
next step would be to expand the validity test set and
reevaluate the validity of the selected models.
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Figures 3-6 from Zeimer, Tew, Sargent and Sisti
(1993) contain surface and contour plots of models
(1), (2), (5), and (7) respectively with CS azimuth
angle and CS channel capacity held at zero. The pre-
fix CS indicates the centered and scaled input fac-
tor. These graphs allow the estimated relationship
between the response, CS altitude, and CS velocity
to be observed independently of CS azimuth angle
and CS channel capacity. They also suggest that the
increasing complexity of the model manifests itself in
increasingly refined shapes and the oplizmum value of
the response changes as the metamodels become more
accurate.

4 SUMMARY AND CONCLUSIONS

In this paper, we have introduced and successfully
demonstrated a possible application of metamodel-
ing to analysis of tactical simulations. While meta-
modeling is not appropriate for all simulation analysis
problems, it does have a wide range of possible ap-
plications. In particular, metamodeling may provide
a means of adequately aggregating simulation model
behavior in hierarchical modeling schemes (see Sar-
gent 1986, and Sisti 1989 and 1992).
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