
DESIGN AND IMPLEMENTATION OF HLA TIME MANAGEMENT
IN THE RTI VERSION F.0

Christopher D. Carothers
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280, U.S.A.

Richard M. Weatherly
Annette L. Wilson

The MITRE Corporation
7525 Colshire Drive

McLean, Virginia 22102-3481, U.S.A.
ABSTRACT

The DoD High Level architecture (HLA) has recently
become the required method for the interconnection
of all DoD computer simulations. The HLA addresses
the rules by which simulations are designed to fa-
cilitate interoperability, the method by which infor-
mation exchanged between simulations is described,
and a standard set of software services provided by
a common Runtime Infrastructure (RTI). The RTI is
responsible for the coordination of collections of co-
operating simulations. The familiarization version of
the RTI, dubbed F.0, was developed at the MITRE
Corporation. One of the core components of the RTI
is Time Management and is the focus of this paper.
In particular, we present the design and algorithms
used to implement the HLA Time Management Ser-
vices in F.0.

1 INTRODUCTION

The HLA consists of 3 parts: (1) HLA rules, (2)
HLA Interface Specification (IFSpec), and (3) Object
Model Template. The software that meets the inter-
face requirements set forth by the IFSpec is called the
Runtime Infrastructure (RTI). For more information
on the HLA and its parts we refer the reader to the
DMSO web-page at http://www.dmso.mil.

The familiarization version of the RTI, dubbed
F.0 , was developed at the MITRE Corporation. The
purpose of this version is to (i) educate the user com-
munity in the correct usage of the RTI, (ii) serve as a
platform for introducing new ideas and concepts that
will improve quality and effectiveness of the RTI, and
(iii) provide a capability until commercial RTIs are
available.

Within the RTI, one of the core components con-
cerns how time is managed and is the focus of this
paper. Here, we describe the design decisions and
algorithmic implementation of RTI F.0 that support
the HLA Time Management Services. Section 2 sets
the stage for this discussion by presenting the de-
sign requirements for Time Management and the key
properties used to differentiate federate types. Based
on these requirements, the RTI’s time management
services are described in Section 3 and their corre-
sponding algorithmic implementation is described in
Section 4. Section 5 concludes this study and presents
directions for future work in Time Management.

2 REQUIREMENTS

To achieve the HLA’s interoperability requirements,
time management must appear transparent to all fed-
erates engaged in a given federation. Insupporting
this transparency, the RTI must allow for: (i) feder-
ates that may or may not be constrained by a time-
flow mechanism, (ii) constrained federates with dif-
ferent and dynamically changing time-flow mecha-
nisms, e.g., event driven or time-stepped federates or
those that switch between these two during execution,
(iii) federates executing on parallel/distributed plat-
forms using a conservative or optimistic synchroniza-
tion protocol including those that dynamically change
between them, (iv) federates with different event or-
dering requirements, e.g., receive or time stamp order,
(v) federates using a mixture of event orderings and
transportation services (e.g., reliable or best effort)
and, (vi) dynamically changing federations where fed-
erates can join and resign from a federation at any
time.

Motivated by the above requirements list, we di-
vided the range of federate types into four major cat-
egories based on two key properties that are used
in the Aggregate Level Simulation Protocol (ALSP)
(Weatherly et. al. 1991): (i) time constrained and
(ii) time regulating (see Figure 1). Federates that are
time constrained , must receive events in time stamp
order. Non-time constrained federates receives events
in the order that they were received by the RTI. Fed-
erates that are time regulating , schedule events that
must be received in time stamp order. Non-timeregu-
lating federates schedule events that will be delivered
in the order received by the destination. Note that
the order of event delivery need not be the order in
which events are processed. Federates can reorder

374 Carothers, Fujimoto, Weatherly, and Wilson
FALSETRUE
T

R
U

E
F

A
L

SE

Federation

Management

Tool

Synchronized

Externally

Strict Time Monitor or

Aggressive Time

Synchronized

Synchronized

Time Regulating
T

im
e

C
on

st
ra

in
ed

Federate Federate

Federate

Figure 1: Simulator Types Based on the Time Con-
strained and Time Regulating Properties

events once delivered.
The first major federate category is strict time

synchronized. To be in this category, a federate must
be time constrained and time regulating. Example
federates include simulations synchronized by con-
servative (e.g. ALSP) and/or optimistic (e.g. Time
Warp (Jefferson 1985)) protocols. Optimistic feder-
ates are included here because despite allowing out-
of-time stamp order execution, the order of commit-
ted events (i.e., events not rolled back) strictly ad-
heres to the time stamp order processing rule.

The next major federate category is aggressive
time synchronized. Here, federates are not time con-
strained, but still schedule time stamped events. A
federate falling into this category would be a DIS fed-
erate (DIS Steering Committee, 1994) that would like
to interoperate with other ALSP federates. In this
example, the DIS federate is able to process events
in “real-time” and not have its time advance con-
strained by the progress of other federates in the fed-
eration. The caveat is that the DIS federate could
receive events in its past and process events out of
order, which is allowed by the DIS protocol. Because,
ALSP requires strict time stamp order processing of
events, the DIS events sent to ALSP federates must
be time stamped. By having a time regulating, DIS
federate, events will be properly time stamped.

The third major federate category is monitor.
This kind of federate is time constrained, but only
schedules receive order events to be sent to other fed-
erates. The reasoning for the viewer category is that
federations will need management tools that display
time stamped information, but would schedule “out-
of-time” receive order events, such as forcing a feder-
ate to resign from the federation or requesting certain
status information, such as the length of the RTI’s
event queues.

The last major federate category is externally syn-
chronized. These federates are synchronized by some
mechanism outside of the RTI. Consequently, the are
not constrained by the RTI’s time management ser-
vices and schedule only receive order events. Here,
the RTI serves as a message passing library and time
management services, while invoked, do not manage
the federate’s advancement of simulated time. This
category of federates would be used in a DIS fed-
eration, such as Synthetic Theater of War (STOW)
(Aronson 1996), which uses a real-time clock that is
external to the RTI to control the advance of simu-
lated time. Because this federation contains non-time
constrained federates, there is no need to schedule
time stamp events, thus all federates have their time
regulating property turned off.

Additionally, the RTI must not only allow feder-
ates of different types to interoperate but also allow
federates to change their type by toggling the time
constrained and time regulating properties during fed-
eration execution.

3 TIME MANAGEMENT SERVICES

In this section, we review the HLA Time Manage-
ment Service set forth in the IFSpec. These services
encompass two aspects of federation execution: (i)
Transportation services and (ii) Time advance ser-
vices. Each of these is discussed in the sections below.

3.1 Transportation Services

The categories of transportation service are distin-
guished by (i) reliability of event delivery, and (ii)
event ordering. With respect to reliability, version
F.0 of the RTI offers two levels of service. Reliable
delivery guarantees that any message sent using this
service will arrive intact at the proper destination.
This level of reliability comes at the cost of increased
latency. Example federates using this service would
be ALSP. Best effort delivery reduces latency, but
does not guarantee delivery. Example federates using
this service would be DIS.

Event ordering characteristics specify the order
and time at which events may be delivered to fed-
erates and are central to the HLA time management
services. In accordance with the 1.0 IFSpec, F.0 offers
two ordering mechanisms. Receive order events are
passed to the federate in the order that they were re-
ceived. Logically, incoming events are placed at the
end of the a first-in-first-out (FIFO) queue, and are
passed to the the federate by removing them from

Design and Implementation of HLA Time Management in the RTI Version F.0 375
the front of this FIFO queue. Time stamp order
(TSO) events utilizing this service will be delivered
to time constrained federates in time stamp order.
Further, the time advance services guarantee that no
event is delivered to a federate “in its past”, i.e., no
TSO event is delivered that contains a time stamp
less than the federate’s current logical time. A conser-
vative synchronization protocol is used to implement
this service. TSO events sent to non-time constrained
federates will be delivered as receive order events.

Earlier versions of the HLA Time Management
Services called for the following additional ordering
services: (i) priority order, (ii) causal order and
(iii) causal and totally order. After several it-
erations through the IFSpec approval process, these
services were excluded from the HLA Baseline Defi-
nition (IFSpec 1.0). Because the F.0 design team’s
charter was to build an RTI that strictly adheres to
this baseline definition, these additional services were
not to be included in F.0.

3.2 Time Advance Services

The time advance services serve several purposes.
First, it provides a protocol for the federate and RTI
to jointly control the advancement of logical time.
The RTI can only advance the time constrained fed-
erate’s logical time to T when it can guarantee that all
TSO events with time stamp less than or equal to T
have been delivered to the federate. At the same time,
conservative federates must delay processing any lo-
cal event until their logical time has advanced to the
time of that event, while optimistic federates will ag-
gressively process events and rollback when it receives
a TSO event in its past and use T as an estimate of
global virtual time (GVT) for fossil collection.

To insure the RTI properly delivers TSO events,
a conservative synchronization protocol implements
the TSO event delivery service and is used to advance
logical time. The principal task of the protocol is to
determine a value called Lower Bound Time Stamp
(LBTS) for each federate, which is defined as a lower
bound on the time stamp of future TSO events that
it will receive from other federates.

Among time constrained federates, there are three
subclasses of federates: (i) conservative event-driven,
(ii) conservative time-stepped, and (iii) optimistic.
For each of these federate subclasses, the following
three time advance service have been devised.

Time Advance Request with parameter t re-
quests an advance of the federate’s logical time to
t. This service is intended to be used by conserva-
tive time-stepped federates where t denotes the time
of the next time step. Invocation of this service by
a time constrained federate implies that the follow-
ing events are eligible for delivery to the federate: (i)
all receive order events, and (ii) all TSO events with
the same time stamp that are less than or equal to t.
When the RTI can guarantee that it has passed to the
federate all such events, the RTI invokes the Time
Advance Grant service, notifying the federate that
its logical time has been advanced to t. Upon receiv-
ing the grant, the federate may proceed to the next
time step.

Next Event Request with parameter t requests
an advance to logical time t, or the time stamp of the
next TSO event from the RTI, whichever is smaller.
By invoking this request, the federate guarantees it
will not produce any new TSO messages in the fu-
ture with a time stamp less than t plus the federate’s
lookahead if that federate does not receive any addi-
tional TSO messages. This service is intended to be
used by conservative event-driven federates where t
denotes the time of the next local event within the
federate that is to be processed. After invocation
of this service, the RTI will deliver all receive order
events and either (i) deliver the next TSO event (and
all other time stamp order events with exactly the
same time stamp) if that event’s time stamp is less
than or equal to t and advance logical time to the
time of that TSO event, or (ii) not deliver any TSO
events and advance logical time to t. In either case,
the RTI calls the Time Advance Grant service, no-
tifying the federate of the completion of this request
and that logical time has been advanced.

Flush Queue Request with parameter t re-
quests an advance to logical time t, or the time stamp
of the next TSO event, or LBTS, whichever is smaller
and deliver all receive order and TSO events currently
residing within the RTI. This service is intended to
be used by optimistic federates, where t denotes the
time of the next local event within the federate that is
to be processed. After invoking this service, the RTI
will deliver all TSO events regardless of their time
stamp, should any exist, then advance logical time
to the minimum of t, LBTS, and the smallest time
stamp of any delivered TSO event and then call the
Time Advance Grant service, notifying the feder-
ate that logical time has been advanced.

To support optimistic federates, the RTI provides
a Retract service that allows federates to “unsched-
ule” previously sent events. When a federate sched-
ules an event, the RTI provides the federate with a
Event Retraction Handle. To retract an event,
the federate invokes the Retract service with the ap-
propriate Event Retraction Handle as the param-
eter. If the retracted event has already been passed to
the federate, the retract service is forwarded to that
federate.

For non-time constrained federates, the time ad-
vance services will deliver all receive order events (re-
call that for non-time constrained federates all events
are treated as receive order) and immediately advance
the federate’s logical time to the requested time via

376 Carothers, Fujimoto, Weatherly, and Wilson
the Time Advance Grant service.
A lookahead value is specified for each federate.

Lookahead defines the minimum distance into the fu-
ture that a TSO message will be scheduled. A fed-
erate may change its lookahead during the federation
execution, however, a decrease in the federate’s looka-
head by an amount k does not take effect until the
federate has advanced k units of time.

An important assumption in using these time ad-
vance services is that federates must have non-zero
lookahead. Because each service will not advance
time until the RTI can unconditionally guarantee that
all events less than or equal to some time t have been
delivered, federates with a zero lookahead may cause
the federation to deadlock (Fujimoto 1996). Changes
to allow zero lookahead federates have been developed
and should appear in RTI version 1.0.

4 IMPLEMENTATION

In designing the algorithms necessary to support all
the requirements placed on the RTI by an unpre-
dictable federate, every effort was made to avoid RTI
modality. The RTI must be able to honor service
calls in any order. This leads naturally to a finite
state machine design philosophy for the time man-
ager. The completion of every service call will leave
the time manager in a position to accept any sub-
sequent service call. The context of service calls, if
any, is captured in the state variables of the time
manager. As part of this design philosophy, the time
management algorithms were constructed to ensure
reliability and to facilitate implementation. Conse-
quently, these algorithms avoid the use of potentially
unreliable distributed programming constructs, such
as global synchronizations.

While the IFSpec is quite detailed in the regard
to the data flow into and out of each HLA Service,
the design team made two assumptions to ease the
development effort required to implement F.0.

(i) All federates are fully connected by
point-to-point, reliable, FIFO communication
links. The Adaptive Communication Environment
(ACE) (Schmidt 1993) was chosen to support the
communications layer of F.0 because it supported
reliable communications between programs started
by different users without having to resort to using
“remote-shells”, which has been shown to have secu-
rity problems. Because ACE uses the TCP/IP pro-
tocol which is reliable, FIFO, point-to-point, it was
decided all algorithms should take advantage of this
communications property whenever possible.

(ii) All TSO messages are sent reliable and
FIFO. The question of designing a synchronization
algorithm that allows best-effort, TSO messages re-
mains unresolved. Due to the F.0 tight delivery
schedule, the design team did not have time to ade-
quately investigate this issue. Accordingly, it was de-
cided that all TSO messages must sent over a reliable
communication link. The FIFO property assumption
is added because the F.0’s communications layer sup-
ported it, allowing for a straight-forward synchroniza-
tion algorithm to be used. It should be noted that fed-
erates can send best-effort, TSO message, however,
the synchronization algorithm currently used will not
guarantee that messages will be delivered in TSO or-
der.

In this section, we provide a detailed description
of F.0’s time management implementation. The first
major design constraint concerned the issue of con-
currency or “threadedness” within the RTI. This is-
sue and its implications for F.0 are discussed. Next,
we present an overview of F.0’s object hierarchy and
then devote the remainder of this section to the im-
plementation of F.0’s time management algorithms.

4.1 RTI Threading

The predecessors to the F.0 RTI are the 0.1 thru
0.33 versions. In this sequence of prototype RTIs,
the core components of the RTI were divided into in-
dependent threads of computation taking the form of
CORBA servers. This partitioning of the code was
along the lines of the RTI services provided (i.e. the
Time Manager thread serviced all time advance ser-
vice requests). CORBA was used to implement pro-
totype RTIs and CORBA IDL was used as the origi-
nal application programmer interface language. The
AMG selected CORBA IDL because of its operat-
ing system and programming language independence.
The RTI implementation team choose CORBA for
the support it provided in the rapid development of
distributed systems. The CORBA-based RTI allowed
experience to be gained with infrastructure soft-
ware that was separate from the federate. This was
the implementation approach already being taken by
many large analytic systems such as JWARS (see
http://afmsrr.sc.ist.ucf.edu/resource/jwars.html).

When the 0.X version series was delivered,
it became increasingly clear that the performance
demands of other systems in the HLA commu-
nity would not be met, such as ModSAF (see
http://www.ait.nrl.navy.mil/modsaf). The reason
for this lies with the number of costly interprocess
communications (IPC) hops taken in the RTI to de-
liver a single message to the federate.

To address the concerns of performance-demanding
federates, the AMG decided that F.0 should be a
singly-threaded library that links directly into the
federate’s program. By having a singly-threaded RTI,
the possibility of race conditions and deadlock is re-
duced. Moreover, time consuming IPCs and context
switches are eliminated. However, the consequence
of this decision is that it complicates federate imple-

Design and Implementation of HLA Time Management in the RTI Version F.0 377
Tick Manager

Manager

Object

Interaction

Manager

Time Manager

Transportation
Manager

Federate

RTI AmbassadorFederate Ambassador

Network

RTI Internal Managers

Figure 2: Version F.0’s Object Hierarchy

mentations. In particular, the federate must explic-
itly yield control to the RTI so it can process service
requests and deliver data to the federate. How this is-
sue is addressed in F.0 is discussed in the next section
below.

4.2 Object Hierarchy

The RTI, shown in Figure 2, is composed of three
main parts: (i) RTI Ambassador, (ii) Federate Am-
bassador, and (iii) Internal RTI Managers. The solid
lines represent service invocations either from the fed-
erate into the RTI or vice versa. The dashed repre-
sent intra-RTI service invocations between the differ-
ent RTI Internal Managers. The first two parts of
the RTI are used to pass information from the RTI
to the federate and vice versa. The RTI Ambassador
serves as an interface for marshalling service requests
made by the federate to the appropriate RTI Internal
Manager. The Federate Ambassador serves as an in-
terface for marshalling service request responses, such
as events or Time Advance Grants, from the RTI
to the federate. Each federate must provide an im-
plementation of the Federate Ambassador’s services.
The interface to both the RTI Ambassador and the
Federate Ambassador are subject to HLA standards.

The Internal RTI Managers support five cate-
gories of run-time services. The Object Manager
implements the object creation, object destruction,
ownership, object publication and object subscrip-
tion services. The Interaction Manager implements
the services that create and destroy interactions as
well as interaction publication and subscription ser-
vices. The Time Manager implements the services
for advancing logical time and will be discussed in
detail. The Transportation Manager is used to send
and receive data and supports the services provided
by the other managers. The federation management
services are implemented in the RTI Ambassador.

In keeping with the above design constraint, the
RTI is designed to be linked in as part of the federate
to form a single simulation with only one thread of
control. To reduce the effort involved in integrating
federates with a single threaded RTI, F.0 provides a
tick service in the RTI Ambassador that gives the
thread of control to the RTI and that ensures that
all the necessary internal RTI functions and service
requests are completed.

When a federate requests the tick service, that
request is sent to the Tick Manager. The Tick Man-
ager then invokes the tick service provided by each
of the RTI Internal Managers to perform their nec-
essary functions. For example, suppose a federate
issues a Time Advance Request for some time, t.
For the RTI to process this request, the tick service
must be invoked. Upon doing so, the Tick Manager
would invoke the Transportation Manager’s tick ser-
vice. Having the single thread of control, the Trans-
portation Manager would deliver pending events from
the network up to the Time Manager, where they
are enqueued into the appropriate queue (either TSO
or receive order). When the Transportation Man-
ager’s tick service completes, control is returned back
to the Tick Manager who immediately gives control
to the Time Manager by invoking its tick service.
The Time Manager, seeing there is a pending Time
Advance Request, examines the receive order and
TSO queues and delivers the appropriate events to ei-
ther the Object Manager or Interaction Manager, who
then directly forwards the event, if necessary, to the
Federate Ambassador. Note, the Tick Manager was
bypassed in delivering events from the Time Man-
ager to the Federate Ambassador. This was done to
expedite the event delivery process. After the Time
Manager’s tick service completes, the Tick Manager
gains control and similarly invokes the tick service on
the Object and Interaction Managers. Once, the Tick
Manager has “ticked” all the managers, control is re-
turned to the federate. In practice, the federate will
need to invoke the tick service more than once (i.e.
“poll” the RTI) before the Time Advance Grant
will be issued.

4.3 Time Management State Transitions

Internal to RTI Time Management there are six states
used to determine what actions need to be completed
and ensure that these actions occur in the correct or-
der. These six states and their respective transitions
are described below:

378 Carothers, Fujimoto, Weatherly, and Wilson
Initialized: Prior to joining a federation but after
the RTI has been initialized, the Time Manager is
placed in this state.

Joining: When the federate invokes the Joining
Federation service, the Time Manager moves from
the Initialized state to this state.

Idle: Once the federate joining process is com-
pleted, the Time Manager transitions to this state.

Time Pending: When the federate invokes the
Time Advance Request service, the Time Man-
ager moves from the Idle state to this state. Next,
the Time Manager’s tick service (called via the Tick
Manager) will in turn invoke the Do Time Pending
decision service (discussed below) based on being in
this state and deliver the appropriate receive order
and TSO events. Having completed the service re-
quest, the Do Time Pending service will issue the
Time Advance Grant and transition back to the
Idle state.

Event Pending: When the federate invokes the
Next Event Request service, the Time Manager
moves from the Idle state to this state. Next, the
Time Manager’s tick service will in turn invoke the
Do Event Pending service (see below) based on
being in this state and deliver the appropriate receive
order and TSO events. Having completed the service
request, the Do Event Pending service will issue
the Time Advance Grant and transition back to
the Idle state.

Flush Pending: When the federate invokes the
Flush Queue Request service, the Time Manager
moves from the Idle state to this state. Next, the
Time Manager’s tick service will in turn invoke the
Do Flush Queue Pending decision service (see
below) based on being in this state and deliver the
appropriate receive order and TSO events. Hav-
ing completed the service request, the Do Flush
Queue Pending service will issue the Time Ad-
vance Grant and transition back to the Idle state.

4.4 TSO Event Queue Case Groupings

During a time advance request-grant cycle, the RTI
must determine which TSO messages are eligible for
delivery to the federate. In making this determina-
tion, the RTI must consider the relationship between
(i) the time stamp of the event at the head of the TSO
queue, (ii) the requested time to which the federate
wishes to advance and (iii) LBTS. Shown in Figure 3
are the six relationship cases between these three fac-
tors, and how a decision is reached as to whether the
RTI should (a) grant, (b) deliver a TSO event, or
(c) do nothing. Head denotes the time stamp of the
event at the head of the TSO queue. LBTS denotes
the lower bound time stamp on any event that could
be sent to this federate in the future. t denotes the
time to which the federated has requested to advance.
Pending Cases

Grant Cases

LBTS

Head LBTS 1

t

LBTS

t

5

3Head
LBTS Head 4

6LBTS

t

t

Head LBTS 2

t

t

Deliver Data Case

Figure 3: Time Stamp Order Event Queue Case
Groupings

The white dot is used to denote a strictly less than
relationship.

We argue that these six cases provide a complete
coverage of all possible values for these three factors.
To make this argument, consider the following case
groups: (i) cases 1 and 2, (ii) cases 3, and 4, and
(iii) cases 5, and 6. We observe that in each of these
groups, the value of t, which denotes the request time,
spans the entire time line. Thus, each of these groups
considers all possible values of t. Next, we observe
that groups (i) and (ii) together cover all possible
relationships between the the head of the TSO queue,
and LBTS. Last, we observe that group (iii) covers all
the cases when the TSO queue is empty and no head
exists. Consequently, these six cases provide complete
coverage.

Now, the case grouping names shown in Figure 3
denote the action generally taking by the Time Man-
ager when in that particular case. Consider the
Grant Cases(cases 1, 3, and 5): we observe that
the request time is always smaller than either the
head of the TSO queue or LBTS. Because of this,
we know it is safe for the Time Manager to issue a
Time Advance Grant to the request time, t. Like-
wise, in the Deliver Data Case (case 2), since the
head of the TSO queue is the smallest of the three
factors, we can always deliver the event that is at the
head of the TSO queue. Last, in the Pending Cases
(cases 4 and 6), the RTI can neither grant nor deliver
data since both the request time and head of the TSO
queue are greater than or equal to LBTS. Note, there
are some exceptions to the actions taken by the Time
Manager, depending on the time advance service.

In the next section, we present the algorithm for
servicing a Time Advance Request. Due to space
limitations, we are unable to present the algorithms

Design and Implementation of HLA Time Management in the RTI Version F.0 379
Time Advance Request(FederationTime t)
case state of

IDLE
if t < LT then

throw FederationTimeAlreadyPassed()
end if
currentLookahead := max(specifiedLookahead,

LT + currentLookahead − t)
requestTime := t
LT := t
if timeRegulating then

send newLT((LT + currentLookahead),
requestTime)

end if
state := TIME PENDING
more := TRUE
fifoRemainingToDequeue := size of FIFO queue

EVENT PENDING
TIME PENDING
FLUSH PENDING

error TimeAdvanceAlreadyInProgress
end case

Figure 4: Time Advance Request Service

used to service Next Event Request and Flush
Queue Request.

4.5 Time Advance Request

When the Time Advance Request service is in-
voked, shown in Figure 4, the state of the Time Man-
ager is first checked. If the state is anything but Idle
an exception is thrown indicating that a time advance
service request is already in progress. Next, because
the federate can shrink its lookahead during federa-
tion execution, the Time Manager must do it in a way
that no causality errors result. This gradual shrink-
ing of the lookahead (if necessary) is accomplished
by the following expression: currentLookahead =
max(specifiedLookahead, LT+currentLookahead−
t), where currentLookahead is the actual lookahead
used by the Time Manager, specifiedLookahead is
the smaller lookahead value that has been recently
reset by the federate and t is the request time. This
expression guarantees that the federate will advance
k units of time before shrinking the lookahead by k
units.

Then, the request time, t, is stored, and the fed-
erate’s logical time, LT, is updated. This update of
LT may seem inappropriate at this point given that
other messages may exist in the TSO queue with a
time stamp less than the request time. However, the
semantics of this service as stated in the IFSpec stip-
ulate that the federate will be granted to the request
time. Moreover, the federate in making this request
is stating that any future messages sent to other fed-
erates will have a time stamp greater than or equal
to t + currentLookahead. Consequently, from the
IFSpec’s point-of-view this behavior is correct, how-
ever federates may have events delivered with a time
stamp less than LT. Accordingly, we believe the AMG
should consider amending the IFSpec to mitigate this
ambiguity.

Next, a newLT message that contains LT +
currentLookahead and the request time is broadcast
to all other federates along the reliable, FIFO, point-
to-point communication links. This newLT message
can be viewed as a null message from Chandy/Misra’s
null message algorithm (Chandy et. al. 1979). When
another time constrained federate’s Time Manager
receives the newLT message, the logical time plus
lookahead value is stored and used to compute LBTS.
LBTS for a federate is defined as minimum of all other
federates logical clock plus lookahead values and is
computed every time a new “LT” value arrives. The
newLT message’s request time is stored separately
and used to break situations where the next event
in the federation is far into the future and the federa-
tion is creeping ahead by exchanging newLT messages
because the lookahead is small. This creeping effect
only occurs in the Next Event Request and Flush
Queue Request services.

Having sent the newLT message, the state of the
Time Manager is set to Time Pending. Now, to tell
the Tick Manager that the Time Manager has more
work to complete, more is set to TRUE. Last, the
size of the receive order event queue is stored prior
to returning control to the federate. The reason for
storing the receive order event queue size will be dis-
cussed below.

When the federates yields control to the RTI via
the tick service, the Tick Manager will invoke the
Time Manager’s tick service. In this service, the de-
livery of all receive order events occurs before any
TSO events are considered for delivery. Delivering
all the receive order events will take several invoca-
tions of this service since only one event is delivered
per invocation. Also, as a means of flow-control, this
service will only deliver the number of receive order
events that is equal to the receive order queue size
at the time the request was made. This was done to
ensure that the amount of time spent processing this
service is consistent between successive invocations
and to prevent continuous FIFO message arrival from
precluding TSO message delivery.

Next, after the receive order events have been de-
livered, TSO events may be delivered provided the
federate is time constrained. Because the state of
the Time Manager is Time Pending, the Do Time
Pending decision service (see Figure 5) is invoked,
which determines which, if any, TSO events are to
be delivered to the federate and then the Time Ad-
vance Grant is issued. By comparing the request
time, the time stamp of the head event of the TSO
event queue and LBTS, the proper case grouping can
be determined. If the case is Deliver Data, this ser-
vice will deliver a single TSO event and set more

380 Carothers, Fujimoto, Weatherly, and Wilson
Do Time Pending()
case findCases() of

DELIVER DATA:
dequeue one TSO message
more := TRUE

GRANT:
grant LT
state := IDLE
more := FALSE

PENDING:
fifoRemainingToDequeue := size of FIFO queue
if fifoRemainingToDequeue = 0 then

more := FALSE
else

more := TRUE
end if

end case

Figure 5: Do Time Pending Decision Service

equal to TRUE. If the case is Grant, then a Time
Advance Grant is issued for the logical time of the
federate, LT, the state is set to Idle and more is set
to FALSE, indicating this service request is complete
and the Time Manager has no pending work to per-
form. If the case is Pending, no actions can be taken
and the number of receive order events is recalculated
to be used in delivering of receive order events in fu-
ture invocations of the Time Manager’s tick service.
If there are receive order events to deliver, more is
set to TRUE. Otherwise it is set to FALSE.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present the design and algorithms
used to implement the HLA Time Management Ser-
vices in version F.0 of the RTI. F.0 will be followed
by RTI 1.0 in May 1997 and RTI 1.1 in the Fall of
1997. These future releases will address candidate
functionality for inclusion in the HLA and services
not provided in F.0. In future RTI versions, we hope
to address the following such as, (i) zero lookahead
federates, (ii) repeatability of results in the presence
of zero lookahead federates, (iii) casually correct tog-
gling of time regulating properties, and (iv) develop-
ment of an efficient synchronization protocol that al-
lows best-effort, TSO messages to be sent.

REFERENCES

Aronson, J. 1996. The STOW-97 system archi-
tecture and implementation design. Techni-
cal Report CDRL:A005, STOW Web Page at
http://www.stow.com.

Chandy, K. M., and J. Misra 1979. Distributed sim-
ulation: A case study in design and verification
of distributed programs. IEEE Transactions on
Software Engineering SE-5(5):440-452.
DIS Steering Committee 1994. The DIS vision, a map
to the future of distributed simulation. Techni-
cal Report IST-SP-94-01, Institute for Simulation
and Training.

Fujimoto, R. 1996. HLA time management.
Technical Report, DMSO HLA Web Page at
http://msis.dmso.mil/projects/hla/.

Jefferson, D. R. 1985. Virtual time. ACM Trans-
actions on Programming Languages and Systems
7(3):404-425.

Weatherly, R. D. Sidel, and J. Weissman 1991. Ag-
gregate level simulation protocol. In Proceedings
of the 1991 Summer Computer Simulation Con-
ference, 953-958.

Schmidt, D. 1993. The adaptive communica-
tion environment (ACE). Technical Report, at
http://www.cs.wustl.edu/~schmidt/ACE-papers.html.

AUTHOR BIOGRAPHIES

CHRISTOPHER CAROTHERS is a Research
Scientist and Ph.D. candidate in the College of Com-
puting at the Georgia Institute of Technology. He
was part of the F.0 development team as a summer
intern at the MITRE corporation.

RICHARD FUJIMOTO is a professor in the Col-
lege of Computing at the Georgia Institute of Tech-
nology. In addition to his many other research activ-
ities in the field of parallel simulation, he chairs the
HLA Time Management Committee.

RICHARD WEATHERLY is a is Chief Engineer
for The MITRE Corporation’s Information Systems
and Technology Division. He wrote the first version
of the HLA Interface Specification and lead the RTI
0.X, F.0, and 1.0 software development teams.

ANNETTE WILSON is a Senior Systems Engi-
neer at the MITRE Corporation. She served as the
Technical Leader for RTI 0.X and F.0 Time Manage-
ment and Data Distribution components.

	DESIGN AND IMPLEMENTATION OF HLA TIME MANAGEMENT IN THE RTI VERSION F.0
	ABSTRACT
	1 INTRODUCTION
	2 REQUIREMENTS
	3 TIME MANAGEMENT SERVICES
	3.1 Transportation Services
	3.2 Time Advance Services

	4 IMPLEMENTATION
	4.1 RTI Threading
	4.2 Object Hierarchy
	4.3 Time Management State Transitions
	4.4 TSO Event Queue Case Groupings
	4.5 Time Advance Request

	5 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 373
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

